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Abstract—This paper presents aspects concerning the design 

and testing of a new data-driven Iterative Reference Input 

Tuning (IRIT) algorithm that solves a reference trajectory 

tracking problem expressed as an optimization problem with 

control signal saturation constraints and control signal rate 

constraints. The design of the IRIT algorithm uses an 

experiment-based stochastic search algorithm formulated in the 

framework of Iterative Learning Control (ILC) in order to 

combine the advantages of data-driven control and of ILC. The 

iterative tuning is model-free in the sense it does not use control 

system models. A set of simulation results tests and validates the 

IRIT algorithm in a case study related to a representative 

mechatronics application that deals with the position control of 

a nonlinear aero-dynamical system. The IRIT algorithm offers 

the performance improvement by few iterations and 

experiments conducted on the process. 

I. INTRODUCTION 

Data-driven optimization techniques for controller design 
offer the control system (CS) performance improvement 
using no a priori model information on the process or little 
such information using simple specifications in terms of 
easily interpretable performance indices. The performance 
indices are usually specified in the time domain (for 
example, the rise time, the overshoot, the settling time), and 
they are aggregated in general integral-type or sum-type 
objective functions (OFs) including the Linear Quadratic 
Gaussian (LQG) ones. The minimization of these functions 
in the framework of constrained optimization problems can 
fulfill different objectives such as reference trajectory 
tracking (including model reference tracking), control signal 
penalty, disturbance rejection, etc. 

The main data-driven techniques that carry out the 
iterative experiment-based update of controller parameters 
are Iterative Feedback Tuning (IFT) [1], Simultaneous 
Perturbation Stochastic Approximation [2] and Model-free 
Control [3]. The most popular non-iterative technique is 
Virtual Reference Feedback Tuning (VRFT) [4]. These 
techniques use various approaches to ensure model-free 
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controller tuning. However, the tuning to achieve reference 
trajectory tracking does not guarantee robust stability or 
robust performance. 

The reference trajectory tracking can be considered as a 
reference input design over an initial CS with a priori tuned 
controllers in order to solve stability and disturbance 
rejection issues [5]. With this regard the iterative controller 
parameter update laws are replaced by reference input 
sequence update laws and the Iterative Learning Control 
(ILC) framework [6]–[8] is applied. 

An experiment-based approach to the reference trajectory 
is given in [5] accounting for the control signal saturation 
constraints and employing an Interior Point Barrier (IPB) 
algorithm. This paper extends these results, and the main 
contributions with respect to the state-of-the-art are: a new 
data-driven Iterative Reference Input Tuning (IRIT) 
algorithm is offered, the operating conditions in the 
informative gradient experiments are restricted near nominal 
trajectories, the derivations for the inclusion of the 
constraints on the control signal rate are presented with the 
theory developed for Linear Time-Invariant (LTI) systems, 
we show that only one gradient experiment is needed in 
order to estimate the gradient of the penalty function that 
does not depend on the number of the constraints or on their 
type, a convincing mechatronics case study concerning a 
position CS for a nonlinear aero-dynamical system is treated, 
and the simulation results show that despite the LTI 
framework was used, the proposed ILC approach works well 
for the investigated system. 

The advantages of these new contributions with respect 
to the previously analyzed literature are: the IRIT algorithm 
uses experiments conducted on the real-world CS. Therefore, 
it can compensate for process nonlinearities and uncertainties 
along the iterations and experiments, and it is model-free in 
the sense it does not use models of the controlled process, 
the IRIT algorithm employs a reduced number of 
experiments that enables cost-effective tuning, the handling 
of two categories of constraints in the optimization problems 
specific to reference trajectory tracking makes the IRIT-
based CSs benefit of the advantages of predictive control, 
our approach is a special case of supervised learning that 
makes it belong to a more general context, with the relations 
of IRIT with supervised learning and with unsupervised 
learning discussed in [5], and due to its iterative nature, our 
algorithm can be started or stopped whenever necessary 
which is different from the adaptive control paradigm, the 
computations are carried out offline, so the computational 
effort is low. 
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The paper is organized as follows. The next section 
presents the problem setting concerning the reference 
trajectory tracking problem solved by data-driven iterative 
optimization. Section III deals with the model-free 
estimation of OF’s gradient with guaranteed convergence. 
Section IV proposes the model-free constrained optimal 
control problem and gives the formulation of the IRIT 
algorithm. Section V targets the validation of the algorithm. 
The conclusions are highlighted in Section VI. The 
computation of the gradients of the quadratic penalty 
functions with respect to the reference input vector is derived 
in the appendix. 

II. DATA-DRIVEN APPROACH TO REFERENCE TRAJECTORY 

TRACKING 

The discrete time LTI Single Input-Single Output (SISO) 
CS is characterized by 

 )(),()(),(),,( 11 kvqSkrqTkry −− += ρρρ , (1) 

where k is the discrete time argument, )(ky  is the process 

output sequence, )(kr  is the reference input sequence, )(kv  

is the zero-mean stationary and bounded stochastic 
disturbance input sequence acting on the process output and 
accounting for various types of load or measurement 
disturbances. The parameter vector ρ  contains the 

parameters of the controller. ),( 1−qS ρ  is the sensitivity 

function, ),( 1−qT ρ  is the complementary sensitivity function 
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)( 1−qP  is the process transfer function, ),( 1−qC ρ  is the 

controller transfer function which is parameterized by the 

parameter vector ρ  and 1−q  is the one step delay operator. 

In a reference trajectory tracking problem the sequence to 

be tracked by the output, i.e. the desired output )(kyd , can 

be generated by a reference model. The control signal 
sequence )(ku  is not explicit in (1), but it may represent 

interest in control when constraints are required and the 
control effort should be manipulated. 

An ILC framework [6]−[8] is applied next to the optimal 
reference input tuning for achieving trajectory tracking. For a 
relative degree n of the closed-loop CS transfer function 

)( 1−qT , the lifted form representation for an N samples 

experiment length in the deterministic case is 

 
0 YRTY += , (3) 

with the matrices 
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R is the reference input vector which contains the reference 
input sequence over the time interval 10 −−≤≤ nNk , Y is 

the controlled output vector, 
it  is the 

thi  impulse response 

coefficient of )( 1−qT , T is a lower-triangular Toeplitz 

matrix, 
0Y  is the free response of the CS due to nonzero 

initial conditions, and the superscript T indicates matrix 
transposition. Zero initial conditions can be assumed without 
loss of generality, and the tracking error vector E is 

 dd YRTYYE −=−=   (5) 

where dY  is the reference trajectory vector. The optimal 
tracking problem can be expressed using (5) as 

 }||)(||)/1{()(minarg 2

2

* RERR
R

⋅== NEJ . (6) 

Equation (5) shows that knowledge on T would provide 
the optimal solution which makes the tracking error zero, 

i.e., d
YTR

1−= . However, T can be ill-conditioned and it is 

always subject to measurement errors; therefore 1−T  cannot 
be used. A solution to the ILC-based iterative estimation of 

T is given in [8]. The optimization problem (6) can also be 
solved over the controller parameters using IFT [9]. 

III. MODEL-FREE ESTIMATION OF GRADIENT 

An iterative approach to solve (6) in the deterministic 
case is based on 
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As suggested in [6] and [7], the combination of (6) and 
(7) suggests an optimization approach to an ILC problem. A 
different approach, based on the results given in [5], will be 
presented as follows. The OF (6) is quadratic with respect to 

the vector R and the gradient of )(RJ  in the deterministic 

case at each iteration j is expressed as 
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Equation (8) suggests that the gradient information can 

be obtained either by an experimentally measured T or by 
using a special gradient experiment at each iteration. The 
model-free gradient experiments that lead to the vector 

j

T ET  in the linear case are presented in [5]. 

The changes in the reference trajectory are of iterative 
nature and they are carried out in the vicinity of the nominal 
trajectory at the current iteration. The linearity assumption 
and operation can therefore be justified in this case. In order 
to allow for near-nominal experiment regimes to be used 
with linear systems and moreover to extend the applicability 
of the IRIT algorithm to nonlinear systems, a perturbation-
based approach is proposed in order to obtain the gradient 
information near the nominal trajectory. The idea stems from 
[9]. The algorithm consists of the following steps: 

Step A. Record the tracking error at the current iteration 

in the vector 
jE . 
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Step B. Define the reversed vector )( jrev E  
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Step C. Apply )( jj rev ER ×µ+  as a reference input to 

the CS and obtain the output vector 

))(( jjG rev ERTY ×µ+= , where the subscript G indicates 

the gradient. The scalar parameter µ  is chosen such that the 

perturbation term )( jrev E×µ  produces only a small 

deviation around the nominal 
jR . 

Step D. Since 
jj RTY  =  is known from the nominal 

experiment, obtain 
j

T ET  as 

 )()/1( jGj

T rev YYET −×µ=  (10) 

and apply (8) to get the gradient of the OF. 

The selection of the parameter µ  can be done 

automatically. The presented approach is at the core of the 
following developments using the LTI-based formulations. 

The stochastic properties of ILC algorithms are treated in 
[6] and [7]. Two stochastic convergence conditions are 
imposed with respect to (7): the estimated gradient is 

unbiased, and the step size sequence 
0}{ ≥γ jj
 converges to 

zero but not too fast. 

IV. ITERATIVE REFERENCE INPUT TUNING ALGORITHM 

A framework to deal with control signal saturation and 
rate constraints is next introduced. The lifted form 
representations allow the expression of a particular useful 
form of the optimization problem. Assuming the 

deterministic case, let )()( mNmN

ur

−×−ℜ∈S  be the lifted map 

that corresponds to the transfer function 

)()()( 111 −−− = qSqCqSur
, where ℜ  is the set of real 

numbers. Using the notation m for the relative degree of 

)( 1−qSur
, nm ≤ , the lifted form representations are 
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The control signal vector can be expressed as RSU ur= , 

where 1)( ×−ℜ∈ mNR  is a vector of greater length than in (4), 

for which 1)( ×−ℜ∈ nNR . Therefore, a truncation of 
urS  

corresponding to the leading principal minor of size nN −  is 

considered such that )()( nNnN

ur

−×−ℜ∈S . This is because we 

want the same R of size nN −  to be tuned and this in turn 

will allow only nN −  (out of mN − ) constraints imposed to 

U to be shown as follows, and the affine constraint 

maxmin )( URUU ≤≤  is imposed on R. So even though we 

could benefit from the dimensionality of the map 
urS , we 

choose only the appropriate size in order to tune the initial R 
from (4). The control signal vector can be expressed next as 

RSRU ur=)( , where )()( nNnN

ur

−×−ℜ∈RS , and the 

constraints hold for )(2 nN −  lower and upper bounds. 

Using (11), the control signal rate sequence )(ku∆  can 

be expressed in the lifted form 
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As shown in (12), the control signal rate vector can be 

expressed as RSRU ur∆=∆ )( , and these constraints also hold 

for )(2 nN −  lower and upper bounds. 

Using the following notations for the vectors of lower 
and upper bounds: 
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the inequality constraints are expressed as 

,)( maxmin URUU ≤≤ ,)( maxmin URUU ∆≤∆≤∆  and the 

optimization problem which ensures the reference trajectory 
tracking with control signal constraints and with control 
signal rate constraints is expressed as 
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where TTQ
T=  is a positive semi-definite matrix, 

dYM −= , TTMq   2= , and MMT =α . 

A solver for this type of problems in the deterministic 
case is the IPB algorithm [5]. The logarithmic barrier penalty 
function used in the IPB algorithm grows unbounded as the 
constraints are violated and in the stochastic framework this 
is always the case. A solution to this problem uses quadratic 
penalty functions [10]. We propose the following augmented 
OF that accounts for inequality constraints concerning the 
control signal saturation and the control signal rate: 
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where the positive and strictly increasing sequence of penalty 

parameters 
0}{ ≥jjp , ∞→jp , guarantees that the minimum 

of the sequence of augmented OFs 
0)}(

~
{ ≥jp j
J R  will converge 

to the solution to the constrained optimization problem (14), 

h, ch ...1= , is the constraint index, 0)( >Rhq  is the thh  

constraint, 
hu~  is the thh  element of U

~
, and T

hs
~  is the thh  

row of S
~

. The optimization problem (14) is solved using a 

stochastic approximation algorithm which makes use of the 

experimentally obtained gradient of )(
~

R
jpJ . 

The quadratic penalty functions )(Rφ  and )(Rφ∆  use 

the maximum function which in this case is non-
differentiable only at zero. Given that )(Rφ  and )(Rφ∆  are 

Lipschitz and non-differentiable at a set of points of zero 
Lebesgue measure, the algorithm visits the zero-measure set 
with probability zero when a normal distribution for the 
noise is assumed [10]. Therefore, using the fact that 
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and the gradients of )(Rφ  and )(Rφ∆  with respect to R 

taken from the appendix (Eqs. (21) and (23), respectively), 
the expression of the gradient of the OF (14) at the current 
iteration j is 
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where 1)( ×−ℜ∈ nN
R , )( jRζ  is defined in (21) as )(Rζ , 

)( jRζ∆  is defined in (23) as )(Rζ∆ , and )( jRζ∆  is a one 

step ahead vector of dimension nN − : 

 T

j nN ]0),(...)2,([)( −∆∆=∆ RζRζRζ . (18) 

The matrix M1 in (23) is exactly the map T

urS , and M2 is 

formed using the impulse response coefficients from T

urS . 

Therefore, the term )()( 21 RζMM ∆−  can be obtained in one 

gradient experiment described as follows. It can be easily 

shown that )()( 21 RζMRζM ∆=∆ . Hence, a gradient scheme 

is used with )( ζζ ∆−∆rev  injected as the reference input to 

the CS. The control signal in this experiment is recorded and 
then reversed. The nN −  samples of this vector are exactly 

)()( 21 RζMM ∆− . This approach takes advantage of the 

dimensionality of the map T

urS . 

V. CASE STUDY AND DISCUSSION OF SIMULATION RESULTS 

The case study deals with the angular positioning of the 

vertical motion of a twin-rotor aero-dynamical system 

experimental setup with the process model and parameters 

given in [11]. The control signal is the PWM duty-cycle 

corresponding to the input voltage range of the DC motor 

and the output and yradv =α )(  is the process output. 

The nonlinear process model is not used in the tuning 
process except for obtaining an initial controller. A discrete-
time linear PI controller with the transfer function 

)1/()012.012.0()( 111 −−− −+= qqqH  is considered. Similar 

PI controllers eventually combined with additional 
functionalities are treated in [12]–[14]. 

The reference trajectory is prescribed in terms of the unit 
step response of a second-order normalized reference model 

with the transfer function )2/( 222

nnn ss ω+ζω+ω  with 

rad/s 5.0=ωn
 and 7.0=ζ . The sampling period is 

s 1.0=sT  for experiment length of 200=N  samples. The 

relative degree of )( 1−qT  is 1=n  and the relative degree of 

)( 1−qSur
 is 0=m . The initial reference signal is chosen 

such as the closed-loop step response is very different from 
the targeted reference trajectory. The value of the initial 
reference is 

sTkkr ⋅⋅= )200/1()( . 

A simulated case study corresponding to the optimization 
with control signal saturation and rate constraints is first 
shown; the two inequality constraints are 14.005.0 ≤≤− u  

and 04.004.0 ≤∆≤− u . A normally distributed zero-mean 

white noise with variance 1010−  was introduced. 

Even if the noise is added, the algorithm is applied as in 
the deterministic case as follows. The sequence of penalty 

parameters in (15) was set to a constant value 45=jp . Two 

constant values of the step-scaling parameter were used for 
the gradient descent. Prior to any constraint violation the step 
scaling is 150=γ , and it is next set to 50=γ . 200 samples 

of the reference input are subject to optimization and a total 
of 796 constraints were used: 398 for control signal 
saturation and 398 for control signal rate saturation. 

Fig. 1 shows strong reference input changes even after 
the first iteration. The initial reference input is the ramp 
ending at 0.1 rad at 20 s. Since both the reference trajectory 
and the initial output response start with zero, the error 
signal between the two at the first sample time is zero. When 
this error signal is reversed, scaled and added to the nominal 
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reference in the gradient experiment, it does not produce a 
disturbance at the final sample of the reference. Because of 
this lack of excitation, the initial reference input has to end at 
the same final value as the one of the reference trajectory. 
With this respect, nonzero initial conditions for the CS 
output actually help. The final reference input shows a 
constant value for the first 1.5 s, which prevents constraint 
violation of the control signal rate illustrated in Fig. 2. 

 

Figure 1.  Simulation results expressed as reference input versus time as the 

learning converges and as OF versus iteration number. 

 

Figure 2.  Simulation results expressed as control signal responses: initial 

(dashed), and final (solid), constant upper and lower bounds (dotted). 

The evolution of the OF presented in Fig. 1 shows a fast 
convergence considering the search space of dimension 200. 
The penalty function indicates that the constraints are firstly 
violated at the 12

th
 iteration of the algorithm. 

Fig. 2 highlights how the control signal and the control 
signal rate evolve from the initial responses to the final ones. 
When control signal rate constraints are violated first the 
tuning is driven in the direction of shaping the reference 
input such that the constraints are fulfilled and the reference 
tracking is ensured. Fig. 2 also shows strong improvements. 

The noise affects the numeric differentiation that occurs 
when the gradient is estimated (in trial domain) and also 
when the sample derivative of the control signal rate is 
calculated (in time domain). Several simulations with 

significantly increased noise intensity show that the reference 
tuning still works. 

The same significant performance improvement against 
the initial CS with PI controller and compared to [12]–[14] is 
shown in Fig. 3, where the final response after 20 iterations 
follows the reference trajectory in an acceptable manner 
given the constraints. Even if the minimum is not reached the 
performance improvements are considerable. 
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Figure 3.  Simulation results expressed as position response: initial (dotted), 

final response after optimization (solid) and reference trajectory (dashed). 

VI. CONCLUSION 

This paper has proposed a data-driven algorithm that 
solves an optimal control problem in order to ensure the 
reference trajectory tracking by few experiments conducted 
on the real-world control system in a representative 
mechatronics application. Our IRIT algorithm is also 
advantageous as it works for smooth nonlinear systems. 

Not only the gradient experiment is conducted once per 
iteration in order to obtain the gradient information but it is 
also performed in the vicinity of the nominal trajectory. This 
is an advantage since the abnormal experiment regimes are 
not required for the CS. 

Our algorithm can be generalized by considering other 
data-driven optimization approaches to controller design and 
tuning [2]–[4], with several objective functions [14], [15], 
combined with ILC to optimize the reference input sequence. 

APPENDIX 

The quadratic penalty function )(Rφ  can be expressed as: 
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The gradient with respect to )0(r  is 
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Using relationships that are similar to (20) for the other 

components of R, the matrix form of the gradient of )(Rφ  

with respect to R is 
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Using (15), )(Rφ∆  can be expressed as: 
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Using (16) in (22), the gradient of )(Rφ∆  with respect to 

R will obtain the expression 
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where 

 

.

)}2(...)0(

)1(...)0(,0max{
...

)}0(,0max{

,

)}2(...)0(

)1(...)0(,0max{
...

)}0(,0max{

,]),()1,(...)1,([

)()()(

11

1min

1

1

min

2

11

1max

1

1

max

1

21





















−−+++

−−−−−∆

−∆

=∆





















−−−−−

−−+++∆−

+∆−

=∆

−∆−−∆∆=

=∆−∆=∆

−−

−
−

−−

−
−

nNrsrs

nNrsrsu

rsu

nNrsrs

nNrsrsu

rsu

nNnN

nN

nN

nN
G

nN

nN

nN
G

T

GG

ε

ε

RζRζRζ

RεRεRζ

 (24) 

REFERENCES 

[1] H. Hjalmarsson, “Iterative feedback tuning - an overview,” Int. J. 

Adapt. Control Signal Process., vol. 16, pp. 373–395, May 2002. 

[2] J. C. Spall and J. A. Cristion, “Model-free control of nonlinear 

stochastic systems with discrete-time measurements,” IEEE Trans. 

Autom. Control, vol. 43, pp. 1198–1210, Sep. 1998. 

[3] S. Andary, A. Chemori, M. Benoit, and J. Sallantin, “A dual model-

free control of underactuated mechanical systems, application to the 

inertia wheel inverted pendulum,” in Proc. 2012 American Control 

Conference, Montréal, QC, Canada, 2012, pp. 1029–1034. 

[4] S. Formentin, P. De Filippi, M. Corno, M. Tanelli, and S. M. 

Savaresi, “Data-driven design of braking control systems,” IEEE 

Trans. Contr. Syst. Technol., vol. 21, pp. 186–193, Jan. 2013. 

[5] M.-B. Radac, R.-E. Precup, E. M. Petriu, S. Preitl, and C.-A. Dragos, 

“Data-driven reference trajectory tracking algorithm and experimental 

validation,” IEEE Trans. Ind. Informat., vol. 9, pp. 2327–2336, Nov. 

2013. 

[6] S. Gunnarsson and M. Norrlöf, “On the design of ILC algorithms 

using optimization,” Automatica, vol. 37, pp. 2011–2016, Dec. 2001. 

[7] M. Butcher, A. Karimi, and R. Longchamp, “Iterative learning control 

based on stochastic approximation,” in Proc. 17th IFAC World 

Congress, Seoul, Korea, 2008, pp. 1478–1483. 

[8] P. Janseens, G. Pipeleers, and J. Swevers, “A data-driven constrained 

norm-optimal iterative learning control framework for LTI systems,” 

IEEE Trans. Contr. Syst. Technol., vol. 21, pp. 546–551, Mar. 2013. 

[9] J. Sjöberg, F. De Bruyne, M. Agarwal, B. D. O. Anderson, M. Gevers, 

F. J. Kraus, and N. Linard, “Iterative controller optimization for 

nonlinear systems,” Control Eng. Pract., vol. 11, pp. 1079–1086, 

Sep. 2003. 

[10] I.-J. Wang and J. C. Spall, “Stochastic optimization with inequality 

constraints using simultaneous perturbations and penalty functions,” 

Int. J. Control, vol. 81, pp. 1232–1238, Aug. 2008. 

[11] M.-B. Radac, R.-C. Roman, R.-E. Precup, E. M. Petriu, C.-A. Dragos, 

and S. Preitl, “Data-based tuning of linear controllers for MIMO twin 

rotor systems,” in Proc. IEEE Region 8 EuroCon 2013 Conference, 

Zagreb, Croatia, 2013, pp. 1915–1920. 

[12] S. F. Toha and M. O. Tokhi, “PID and inverse-model-based control of 

a twin rotor system,” Robotica, vol. 29, pp. 929–938, Oct. 2011. 

[13] A. P. S. Ramalakshmi and P. S. Manoharan, “Non-linear modeling 

and PID control of twin rotor MIMO system,” in Proc. 2012 IEEE 

International Conference on Advanced Communication Control and 

Computing Technologies, Ramanathapuram, India, 2012, pp. 366–

369. 

[14] D.-W. Gu, P. H. Petkov, and M. M. Konstantinov, Robust Control 

Design with MATLAB®, 2nd ed. London: Springer-Verlag, 2013. 

[15] P. V. Pakshin, K. Gałkowski, and E. Rogers, “Linear-quadratic 

parametrization of stabilizing controls in discrete-time 2D systems,” 

Autom. Remote Control, vol. 72, pp. 2364–2378, Nov. 2011. 

 

 


