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Abstract 
 
This paper proposes a data-based model-free approach to reference trajectory tracking in two-degree-of-

freedom (2-DOF) nonlinear control system structures. This model-free control approach tunes both the 

feedback controller parameters and the reference input sequence accounting for control saturation and control 

rate constraints. The controller is iteratively tuned in a nonlinear framework that employs a gradient descent 

search approach. The model-free gradient estimates are obtained by a perturbation-based approach. The 

reference input tuning is carried out in a linear framework using an Iterative Learning Control-based approach, 

and it also includes a model-free gradient search algorithm where the gradient estimates are obtained by a 

similar perturbation-based approach. The number of real-world experiments is significantly reduced by the 

use of simulated models identified as neural networks. A digitally simulated case study concerning the 

angular position control of a nonlinear aerodynamic twin-rotor system shows that our approach can 

effectively improve the control system performance. 
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1. Introduction 

 
Data-based control design targets the control system (CS) performance improvement using optimization 

approaches where no a priori model information on the process is available or little such information is used. 

The performance specifications in complex industrial process applications are translated into easily 

interpretable performance indices that are usually specified in the time domain (for example, the rise time, the 

overshoot, the settling time), and they are aggregated in general integral-type or sum-type objective functions. 

The minimization of these objective functions in the framework of constrained optimization problems can 

fulfil different objectives such as reference trajectory tracking (including model reference tracking), control 

signal (c.s.) penalty, disturbance rejection, etc. 

The reference trajectory tracking problem can be formulated as a dual data-based iterative optimization 

problem (OP) with respect to both the feedback controller parameters and the reference input. The main data-

based techniques that carry out the iterative experiment-based update of controller parameters are Iterative 

Feedback Tuning (IFT) [1], Correlation-based Tuning [2], Frequency Domain Tuning [3], Iterative 

Regression Tuning [4], and Simultaneous Perturbation Stochastic Approximation [5], [6]. Other model-free 

control approaches are data-driven predictive control [7], [8], Model-free Control [9], data-based or data-

driven Model-free Adaptive Control [10], [11], unfalsified control [12], and adaptive online IFT [13]. The 

most popular non-iterative technique is Virtual Reference Feedback Tuning (VRFT) [14], [15]. These 

techniques use various approaches to ensure model-free controller tuning. However, the tuning to achieve 

reference trajectory tracking does not guarantee robust stability or robust performance. Some recent data-

based control approaches ensure robust stability/performance while still keeping the model-free property; 

these approaches try to avoid the direct process identification and to infer the results from data or from easy-

to-obtain non-parametric CS models such as the frequency response functions [3]. The data-based control can 

be integrated with other data-based approaches for modelling, process monitoring and fault diagnosis [16]. 

On the other hand, as shown in our recent papers [17] and [18], the reference trajectory tracking can also 

be considered as a reference input design over an initial CS a priori tuned controllers in order to solve stability 

and disturbance rejection issues. Therefore, the reference trajectory tracking is defined as an open-loop 

optimal control problem. An Iterative Learning Control (ILC) framework [19], [20] can be used with this 

respect. Such approaches to ILC-based solving of optimal control problems are formulated in [20], and the 

stochastic approximation is treated in [21]. The analysis of the current literature highlights that the reference 

tracking belongs to the optimization issues in data-based control which are thoroughly discussed in [22]. The 
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affine constraints are handled in [23] by the transformation of ILC problems with quadratic o.f.s into convex 

quadratic programs. The system’s impulse response is estimated in [24] using input/output measurements and 

next used in a norm-optimal ILC structure that accounts for linear inequality actuator constraints. A learning 

approach for the parameters of motion primitives to achieve flips for quadrocopters is given in [25] using 

simple approximate models. Reinforcement learning formulations for policy search using approximate models 

and signed derivatives are presented in [26]. 

This paper offers a novel two-degree-of-freedom (2-DOF) iterative data-based model-free control 

approach to reference trajectory tracking problems. The optimal tuning of the controller parameters ensures 

iterative control as it uses an IFT approach whereas the optimal tuning of the reference input sequence is 

tackled using ILC. Both tunings address the c.s. saturation and c.s. rate constraints and they can be viewed in 

a general iteratively solved supervised learning approach. 

This paper proposes the following new contributions with respect to the previous approaches given in [18] 

and [27], and with respect to the state-of-the-art on iterative data-based learning, with focus on as few as 

possible learning iterations for significant performance improvement using as little as possible information on 

the process: 

- A new 2-DOF iterative data-based model-free solution to the reference trajectory tracking problem is 

offered, in which both the feedback controller and the reference input are tuned. 

- A mechanism to deal with c.s. saturation and c.s. rate constraints using a quadratic penalty function 

approach is proposed. 

- The reduction of the number of real-world experiments in the computation of the gradient of the 

objective function (o.f.) is achieved. This results from a neural network (NN) simulation-based 

approach where the models identified as NNs are valid only in the vicinity of the nominal trajectories 

at the current iteration. 

- A convincing case study on a nonlinear aerodynamic twin-rotor system to illustrate the effectiveness 

of our approach is provided. 

Our iterative approach is attractive and advantageous with respect to the state-of-the-art because: 

- It significantly improves the CS performance and it also compensates for the poor process modelling 

(including uncertainties), identification and complexity. 

- The computations are carried out offline. Therefore, they do not require excessive real-time 

processing demands. 
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The paper is structured as follows. The reference trajectory tracking problem is formulated in Section 2 as 

an OP. The controller tuning problem and the reference input tuning problems are presented in Subsections 

2.1 and 2.2. The digitally simulated case study given in Section 3 illustrates the application of our approach, 

and discussions are included. The conclusions are highlighted in Section 4. 

 
2. Problem formulation 

 
The Single Input-Single Output (SISO) discrete-time CS is described by the nonlinear process and 

controller equations: 
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where k is the discrete time argument, ),,( kry ρ  is the process output sequence, )(kr  is the reference input 

sequence, )(kv  is the zero-mean stationary and bounded stochastic disturbance input and can model a large 

class of load and noise measurement disturbances, ρ , ρℜ∈ n
ρ , is the parameter vector of the controller, and 

ℜ  is the set of real numbers. The nonlinear functions P and C make the model (1) belong to the class of 

nonlinear autoregressive exogenous (NARX) models treated in [28]. 

The assumptions related to (1) are 

- The closed-loop CS is stable. 

- P and C are smooth functions of their arguments. 

- The nominal trajectory of the CS is )}(),(),({ kykukr nnn
, )k ...0= , where ) is the experiment length. 

A typical objective in iterative CS performance improvement is to solve an OP defined as a reference 

trajectory tracking problem, starting with the initial controller parameters 
0ρ  and with the initial reference 

input )(0 kr : 
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subject to system dynamics (1) and to operational constraints, where 
SD  is the stability domain of those 

parameter vectors ρ  that ensure a stable CS [29], [30], and several stability conditions can be involved [31]–

[34]. The constraints are usually formulated as inequalities imposed to )(ku  and )(ky , and to their rates with 

respect to time, )1()()( −−=∆ kukuku  and )1()()( −−=∆ kykyky , and they depend on specific 
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applications [35]–[37]. The expression of J in (2) targets the trajectory tracking of the desired system output 

dy , the c.s. is penalized by the weighting parameter 0≥λ , and the expectation {...}E  is taken with respect to 

v. 

Equations (1) and (2) show that the o.f. is influenced by both the controller parameters and the reference 

input. Thus, our new approach focuses on the combined tuning of controller parameters and of reference input 

sequence to achieve the same control objective, namely the reference trajectory tracking specified in the o.f. 

(2). Our approach considers successive controller and reference input tunings using a closed-loop 

parameterized control policy and an open-loop unparameterized one. 

 
 

2.1. Controller tuning 

 
The reference input r is considered to be fixed within one experiment trial. The usual approach to solve 

the OP (2) in the unconstrained case is to employ the recursive stochastic search algorithm 
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with the search information provided by the estimate of the gradient of the o.f. J with respect to the 

controller parameters and using, for example, second-order information as a Gauss-Newton approximation of 

the Hessian 
jH  of the o.f. The subscript j , Z∈j , 0≥j , indicates the current iteration number, and 0>γ j

 

is the step size [1]. 

The stochastic convergence of IFT algorithms is treated in [1]. Two stochastic convergence conditions are 

imposed, namely the estimated o.f. gradient is unbiased, and the step size sequence 
0}{ ≥γ jj
 converges to zero. 

The second condition is fulfilled for the choice of 
jγ  
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The main feature of IFT [1] provides gradient information from special experiments conducted on the 

closed-loop CS. These experiments avoid the process model, and they also require special operating regimes 

that are different from the nominal ones. The experiments generate the gradients of y and u with respect to the 

controller parameters, namely ρ∂∂ /y  and ρ∂∂ /u , which are next used to compute both the gradient of J and 

jH . Although the linearity is assumed, the nonlinear-based procedure is also feasible [38] because the 
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gradients can be estimated not by finite difference approximations for modifications of ρ , but by modified 

reference trajectories for small changes in the vicinity of the nominal trajectories, )()()( krkrkr n−=δ , 

)()()( kukuku n−=δ  and )()()( kykyky n−=δ . The procedure used in [28] is based on the identification of 

linear time-varying models by a least squares criterion with forgetting factor which is different from our NN-

based approach. 

The NNs will be used here as convenient universal approximators (with prescribed accuracy) to provide 

the gradient information needed in the search algorithm. With this regard, the nonlinear map from r to y and 

the nonlinear map from r to u are identified using data collected in the normal experiment in which the o.f. is 

evaluated. Let these two maps be 
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The variables 
hy ρ∂∂ /  and 
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where 1=δρ h
 is considered, and the numerators are equivalent to carrying out two simulations, i.e., one 

with nominal controller parameter vector ρ  and another one with thh  controller parameter varied with the 

term 
hhδρµ . The scalars 

hµ  are chosen to account for only small changes around the nominal reference input 

trajectory )}({ krn
 where the analysis holds. The variables y  and u  are obtained by filtering the nominal and 

the perturbed reference trajectories through the nonlinear maps 
ryM  and 

ruM , respectively. 

The advantages of our approach are: 

- It can be applied to linear and nonlinear systems, and avoids the controller parameters perturbation-

based approach for gradient estimation, hence the iterative controller parameters update is carried 

out when a descent direction is computed. 

- By perturbing only the reference trajectory at each iteration rather than perturbing the controller 

parameters, the closed-loop stable operation of the CS is preserved in the vicinity of the current 

iteration trajectory. 
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- Our approach avoids direct process knowledge because it uses simulated trajectories in terms of 

closed-loop CS models. Simple NN architectures can be trained because these models usually 

exhibit low order behaviours. Moreover, these models are obtained in the vicinity of the nominal 

trajectories and are not valid in a wide operating range and we are not concerned with experiment 

design for identification purposes. 

The numerical differentiation issues in noisy environments are mitigated because the obtained trajectories 

are not affected by the noisy data involved in NN training. A double approximation involved by the 

linearization around the nominal trajectories and the NN-based approach is employed. The approach is 

efficient for small approximation errors. 

The OP that ensures the reference trajectory tracking with c.s. constraints and with c.s. rate constraints is 
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The constrained OP is transformed into an unconstrained OP using penalty functions. We propose the 

following augmented o.f. which accounts for inequality constraints on the c.s. saturation and on the c.s. rate: 
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where the positive and strictly increasing sequence of penalty parameters 
0}{ ≥jjp , ∞→jp , guarantees 

that the minimum of the sequence of augmented o.f.s 
0)}(

~
{ ≥jp j
J ρ  will converge to the solution to the 

constrained OP (7), and m, cm ...1= , is the constraint index, 0)( >ρmq  is the thm  constraint. The OP that 

minimizes )(
~

ρ
jpJ  in (8) is solved using a stochastic approximation algorithm which uses the experimentally 

obtained gradient of )(
~

ρ
jpJ . 

The quadratic penalty function )(ρφ  is defined in (8) on the basis of the maximum function which is non-

differentiable only at zero. Given that )(ρφ  is Lipschitz and non-differentiable at a set of points of zero 

Lebesgue measure, the algorithm visits the zero-measure set with probability zero when a normal distribution 

for the noise is assumed [39]. Therefore, using 
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The first term in (10) corresponding to the gradient of the original o.f. requires knowing the gradient 

ρ∂∂ /)(ky , and the second term in (10) requires the gradients of )(ku  and )(ku∆  with respect to ρ . These 

variables are estimated using (6). The derivative of the c.s. rate with respect to the parameter vector ρ  is 

estimated using the finite differences approximation approach for the sampling period tδ : 
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2.2. Reference input tuning 

 
The controller parameters are considered to be fixed, and the reference input sequence is a vector variable 

in the OP (2). In addition, a linear approximation of the nonlinear model (1) is considered, and let the CS (1) 

be described by the discrete-time Linear Time-Invariant SISO model: 

)(),()(),(),,( 11 kvqSkrqTkry −− += ρρρ ,                (12) 

where the input and output variables are defined as in (1), ),( 1−qS ρ  is the sensitivity function, ),( 1−qT ρ  is 

the complementary sensitivity function 
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)( 1−qP  is the process transfer function (t.f.), ),( 1−qC ρ  is the controller t.f. parameterized by the 

parameter vector ρ  that contains the tuning parameters of the controller, and 1−q  is the one step delay 

operator. The parameter vector ρ  will be omitted as follows in some equations for the sake of simplicity. 

For a relative degree n of the closed-loop CS t.f. )( 1−qT , the lifted form representation for an ) samples 

experiment length in the deterministic case is 

0 YRTY += ,                   (14) 

with the matrices 
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R is the reference input vector which contains the reference input sequence over the time interval 

10 −−≤≤ n)k , Y is the process output vector, 
it  is thi  impulse response coefficient of )( 1−qT , T is a 

lower-triangular Toeplitz matrix, 
0Y  is the free response of the CS due to nonzero initial conditions and trial-

repetitive disturbances, and the superscript T indicates matrix transposition. Zero initial conditions are 

assumed without loss of generality, and the tracking error vector E is dd
YRTYYE −=−=  , where dY  is the 

reference trajectory vector generated from )(kyd . Knowledge on T would provide the optimal solution which 

makes the tracking error zero, i.e., dYTR 1−= . However, T can be ill-conditioned and it is always subjected to 

measurement errors; therefore 1−
T  cannot be used. A solution to the iterative estimation of T in an ILC 

framework is given in [24]. The control objective is to minimize the expected normalized norm of the 

tracking error: 
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where TTQ T=  is a positive semi-definite matrix, TMq   2 T= , and MMT =α . A gradient descent 

approach to iteratively solve (16) is 
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where j is the iteration or trial index, }{
j

J
est

RRR =∂
∂  is the estimate of the gradient of the o.f. with respect 

to the reference input vector samples, 1~ −
H  is a Gauss-Newton approximation of the Hessian of the o.f., 

typically given by a Broyden-Fletcher-Goldfarb-Shanno (BFGS) update, and 
jγ  is the step size. The 

stochastic convergence of ILC algorithms is treated in [21], and it requires the same properties of 
jγ  as in (4). 
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The o.f. in (16) is quadratic with respect to R, and the gradient of the o.f. in the deterministic case at each 

iteration j is 
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Equation (18) suggests that the gradient information can be obtained either by an experimentally measured 

T or by using a special gradient experiment (g.e.) at each iteration. The second solution is preferred in the 

model-free approach. 

We propose an experimental approach to extract the gradient information from the experiments conducted 

in the vicinity of the nominal trajectories. This is a perturbation-based approach inspired by [38], and it is a 

modified version of the algorithm given in [18]. The algorithm that gives 

j

J

RRR =∂
∂  is formulated as follows: 

Step A. Record the tracking error at the current iteration in the vector 
jE . 

Step B. Define the reversed vector )( jrev E  
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Step C. Apply )( jj rev ER ×µ+  as a reference input and obtain the output vector 

))(( jjG rev ERTY ×µ+= , where the subscript G indicates the g.e. The scalar parameter µ  is chosen such 

that the term )( jrev E×µ  represents a small deviation around the nominal 
jR . 

Step D. Since 
jj RTY  =  is known from the nominal experiment, obtain 

j

T ET  as 
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and apply (18) to get the gradient 

j

J

RRR =∂
∂ . 

Automatic choice of µ  ensures that the nominal reference input is perturbed in an acceptable manner and 

the linearity is preserved. 

Operational constraints are next addressed. Let )()( m)m)

ur

−×−ℜ∈S  be the lifted map that corresponds to the 

t.f. )()()( 111 −−− = qSqCqSur
. Using the notation m for the relative degree of )( 1−qS ur

, nm ≤ , the lifted form 

representations are 
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The expression of the c.s. is RSU ur= , where 1)( ×−ℜ∈ m)R  is a vector of greater length than in (15), for 

which 1)( ×−ℜ∈ n)R . Therefore, a truncation of 
urS  corresponding to the leading principal minor of size n) −  

is applied such that )()( n)n)

ur

−×−ℜ∈S . This truncation ensures that the same R of size n) −  is tuned, and this 

also allows only n) −  (out of m) − ) constraints imposed to U. So even though we could benefit from the 

dimensionality of the map 
urS , we choose only the appropriate size in order to tune the initial R in (15). The 

c.s. vector is next expressed as 
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As shown in (23), the c.s. rate vector can be expressed as 
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and these constraints also hold for )(2 n) −  lower and upper bounds. Using the notations for the vectors 

of lower and upper bounds 
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the inequality constraints are 

,)(

,)(

maxmin

maxmin

URUU

URUU

∆≤∆≤∆

≤≤                   (26) 

and the OP which ensures the reference trajectory tracking with c.s. saturation constraints and with c.s. 

rate constraints is 
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A solver for this type of problems in the deterministic case is the Interior Point Barrier algorithm [18], 

[23]. We propose a quadratic penalty approach, with an augmented o.f. which accounts for inequality 

constraints concerning the c.s. and the c.s. rate: 
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                (28) 

where 
0}{ ≥jjp , ∞→jp , guarantees, as in (8), that the minimum of the sequence of augmented o.f.s 

0)}(
~

{ ≥jp j
J R  will converge to the solution to the constrained OP (27), h, ch ...1= , is the constraint index, 

0)( >Rhq  is thh  constraint, 
hu~  is thh  element of U

~
, and T

hs~  is thh  row of S
~

. The OP with the o.f. )(
~

R
jpJ  

given in (28) is solved using a stochastic approximation algorithm which uses the experimentally obtained 

gradient of )(
~

R
jpJ . 

The quadratic penalty functions )(Rφ  and )(Rφ∆  in (28) fulfil the same conditions as )(ρφ  defined in (8). 

Therefore 

1...0  ,
)(
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)}](,0[max{ 2

−−=
∂

∂
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∂
−∂

n)i
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h

h R
R

R .             (29) 
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The expression of )(Rφ  in (28) is 

}.))}]1(...)0(~(,0[max{...))}]1()0(~(,0[max{

))}]0(~(,0[max{))}]1(...)0(~(,0[max{

...))}]1()0(~(,0[max{))}]0(~(,0{[max{
2

1
)(

2
1)(2

2
122

2
11

2
1

2
122

2
11

−−+++−++++−+

+−+−−−−−−+

+−−−+−−=φ

−−+−

+−−−

n)rsrsursrsu

rsun)rsrsu

rsrsursu

n)n)n)

n)n)n)

R

          (30) 

The gradient with respect to )0(r  is 
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Using relationships that are similar to (31) for the other components of the reference input vector, the 

matrix form of the gradient of )(Rφ  with respect to R is 
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Using (28), )(Rφ∆  is expressed as 
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Using (24) in (33), the gradient of )(Rφ∆  with respect R is 
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The gradient of )(Rφ∆  with respect to R is transformed as 
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Using (32) and (35), the expression of the gradient of the o.f. )(
~

R
jpJ  at the current iteration j is 
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~
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j
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∂

=
               (36) 

and )( jRζ∆  is the one step ahead vector of dimension n) −  

T

j n) ]0),(...)2,([)( −∆∆=∆ RζRζRζ .               (37) 

The matrix 
1M  in (35) is exactly the map T

urS , and 
2M  consists of the impulse response coefficients of 

T

urS . Therefore, the term )()( 21 RζMM ∆−  can be obtained in one g.e. described as follows. Since 

)()( 21 RζMRζM ∆=∆ , instead of building 
2M  from unknown coefficients of T

urS , we experiment with a 

slightly modified input, i.e., )( jRζ∆ , to obtain the same effect as that caused by using 
2M . 
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Finally, a single g.e. scheme can be used with the reversed vector 

))(())()()(( jjjj revrev RψRζRζRζ =∆−∆+                (38) 

injected as a reference input taking advantage of the dimensionality of T

urS . This single g.e. will provide 

the gradient with respect to all c.s. saturation and c.s. rate constraints. The same approach is used as in the 

previously presented four-step algorithm in order to constrain the evolution of CS in the vicinity of the 

nominal trajectory. 

Each iteration in the algorithm requires a normal experiment with the current reference input. After the 

normal experiment, the g.e.s require running perturbed trajectories in the vicinity of the nominal ones. These 

perturbed trajectories are obtained for perturbed reference inputs with small amplitude signals. A simulation-

based mechanism based on identified models is used to avoid conducting g.e.s on the real-world CS. The 

identified models are valid only in the vicinity of the current iteration nominal trajectories. No additional 

experiments are required to collect data in a wide operating range for identification purposes, so these models 

are used only within the current iteration. In order to extend the applicability of this approach to smooth 

nonlinear systems, NN-based models as NARX ones are used in the identification, with two advantages: 

- The closed-loop CS behaviour is usually of low-pass type, resulting in models with rather simple 

dynamics. 

- The numerical differentiation issues which occur in noisy environments are mitigated by our 

approach. 

Given the nonlinear maps (5), a more compact representation that takes advantage of the super vector 

notation is )(RY ryM=  and )(RU ruM= . The current iteration trajectories },,{ jjj YUR  from the normal 

experiment are used to identify 
ryM  and 

ruM . Using the gradient estimation scheme from (20) in (36), the 

estimate of 

j

J
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where 0>µY
 and 0>µU

 are scaling factors chosen such that the perturbations are only of small 

amplitude with respect to the current iteration reference input. 
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3. Case study and discussion of the simulation results 
 

The case study deals with the angular positioning of the vertical motion of a nonlinear aerodynamic twin-

rotor system experimental setup [27]. The horizontal position is considered fixed, and the nonlinear equations 

of the vertical motion are [27] 

),()(

,

],sincos)[()(
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vv

vvvvvvmvv

MUMI

CBAgkFlJ

ω−=ω

Ω=α

α−α−+Ω−ω=Ω

&

&

&

               (40) 

where uU v =(%)  is the c.s., i.e., the PWM duty-cycle of motor’s input voltage, V 24V 24 ≤≤− u , 

)/( sradvω  is the rotor’s angular speed, yradv =α )(  is the process output, i.e., the pitch angle of the beam 

which supports the two rotors, and )/( sradvΩ  is the beam’s angular velocity. The other parameters and 

variables are given in [27], and the parameter values are 

. 0936.0, 2.0

, 05.0,/  0127.0

,  105.4,  02421.0
2

252

mkgradCml

mkgradABsmkgk

mkgImkgJ

m

v

vv

==

=−=

⋅== −

               (41) 

The nonlinear model (40) is not used in the tuning process except for obtaining an initial controller which 

can also be obtained by model-free approaches as VRFT [14], [15]. 

A discrete-time linear PI controller with the t.f. )1/()001.0012.0()( 111 −−− −+= qqqH is considered 

initially. The reference trajectory is prescribed as the unit step response the reference model with the t.f. 

7.0  rad/s, 5.0  with ),2/()( 222 =ζ=ωω+ζω+ω= nnnn sssRM .             (42) 

The sampling period is s 1.0=sT  and the length of experiments is of 400=)  samples. The relative 

degree of )( 1−qT  is 1=n  and the relative degree of )( 1−qSur
 is 0=m . 

 
 

3.1. )eural network training 

 
The NN architecture used in the identification and in the gradient estimation consists of one hidden layer 

with six neurons and one output layer with one neuron. Hyperbolic tangent activation functions are employed 

in the hidden layer, and the output neuron uses a linear activation function. The same architecture is used for 

both 
ryM  and 

ruM . The inputs of the two NNs are ])1()()1()(1[)( −−= krkrkykykT

ryx  for 
ryM  
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and ])1()()1()(1[)( −−= krkrkukukT

rux  for 
ruM . The outputs of the NNs are )(ky  for 

ryM  and 

)(ku  for 
ruM . 

The two NN architectures are trained using the ILC framework with the guidelines given in [27]. Each 

hidden layer neuron has five parameters, i.e., four weights and one bias. The output layer has seven weights 

including the bias. We trained the output weight vectors 17×∈ RW  and hidden units weights 

6...1   ,15 =∈ × ii RV . All parameters are initialized with a zero mean normal distribution with variance 1. 

The NN-based identification is carried out on the nominal trajectories of the closed-loop CS for the initial 

controller parameters and for the initial reference input presented in the next section. Only the results 

concerning the identified map 
ryM  are given here. For the norm-optimal ILC problem, the weighting matrices 

were chosen as 
400IR =  and 

370001.0 IQ ⋅= , where 
ζI  indicates the thζ  order identity matrix. The 

evolution of the training error throughout the iterations and the evolutions of the process output before and 

after training are shown in Fig. 1. 
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Fig. 1. NN training during the iterations and process output before and after training. 
 
 

3.2. Controller tuning 

 
With the reference input fixed, initially given in terms of the unit step response of the reference model 

with the t.f. (42), the controller is now optimally tuned. The tuning aims the minimization of )(ρJ  in (7) in 

this first phase. The c.s. saturation and rate constraints are considered as 18.0)(05.0 ≤≤− ku  and 
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02.0)(02.0 ≤∆≤− ku . The sequence of penalty parameters of the augmented o.f. is set to 5.2=jp . When 

no constraints are violated the search uses a BFGS update for the estimate of the Hessian and a step size of 

1.0=γ ; otherwise, the Hessian estimate is the identity matrix and the step size is the same, 1.0=γ . Several 

intermediate trajectories of the c.s. rate shown in Fig. 2 violate the upper constraint, but they are next pushed 

back within the boundaries. This is correlated with the activation of the penalty function in Fig. 3, which 

drives the tuning to ensure that the constraints are violated. When no constraints are violated, the tuning is 

driven to minimize the control error outlined in )(ρJ . The learned output trajectories given in Fig. 4 illustrate 

the scenario, and the final output is closer to the reference trajectory. The final controller parameters are 

T]0028.00192.0[=ρ . 
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Fig. 2. Simulated responses of c.s. and of c.s. rate: initial trajectories (dotted), intermediate trajectories (grey) 
and final trajectories (solid black). The constraints are dashed. 
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Fig. 3. Augmented objective function and penalty function versus iteration number. 
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Fig. 4. Simulated responses of process output: initial trajectory (dotted), intermediate trajectories (grey) and 
final trajectory (solid black). The reference input is dashed. 
 
 

3.3. Reference input tuning 

 
With the controller parameters tuned and fixed, the reference input sequence is optimized in terms of the 

OP (16) using the same constraints. 

The approach is applied as in the deterministic case as follows. The sequence of penalty parameters in (28) 

is set to the constant value 25=jp . Two constant values of the step size are used in the gradient descent. 

When no constraints are violated the step size is 2.0=γ  and a BFGS Hessian update is used; otherwise, we 
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set 10=γ  and the Hessian estimate to the unit matrix. 400 samples of the reference input sequence are 

subjected to optimization, and a total number of 1596 constraints are used: 798 for c.s. saturation and 798 for 

c.s. rate saturation. 

Fig. 5 gives the evolution of the c.s. and of the c.s. rate during the learning process. Fig. 6 shows the 

evolution of the reference input during the learning process. The differences from the initial reference input 

are dramatic. Fig. 6 also shows the penalty function which contributes to the optimized augmented o.f. As the 

constraints are violated, they weight more in the o.f., and they eventually provide a more significant 

contribution to the gradient, thus driving the optimization to bring the trajectories within the feasible 

boundaries. This is done with the cost of the reference tracking criterion. Even with the double approximation 

involved in the linearity assumption and in the NN-based gradient estimation mechanism, the o.f. decreases as 

illustrated in Fig. 6, and the performance improvements are evident. The penalty function in Fig. 6 must be 

correlated with the c.s. rate constraint violation in Fig. 5. The output trajectories presented in Fig. 7 

convincingly point out the CS performance improvement. 
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Fig. 5. Simulated responses of c.s. and of c.s. rate: initial trajectories (dotted), intermediate trajectories (grey) 
and final trajectories (solid black). The constraints are dashed. 
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Fig. 6. Simulated reference inputs as initial one (dotted), intermediate ones (grey) and final one (solid black), 
augmented objective function and penalty function versus iteration number. 
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Fig. 7. Simulated responses of process output: initial trajectory (dotted), intermediate trajectories (grey) and 
final trajectory (solid black). The reference input is dashed. 
 
 
4. Conclusions 

 
This paper shows that: 

- The same reference trajectory tracking objective can be addressed either by tuning the controller 

parameters or by tuning the reference input signal sequence (equivalent to tuning a reference input 

filter). In this sense the proposed approach can be considered as model-free 2-DOF controller tuning. 
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- Only the OP structure is exploited in both cases, and it does not use explicit process models. 

Therefore, an iterative data-based model-free control approach has been offered in this paper. 

- A reactive mechanism for dealing with operational constraints has been successfully validated. 

The results in the case study attest that the performance improvements are obvious. Our approach adapts 

well from data, compensating for process nonlinearities and uncertainties. Future research will focus the 

application of this approach to other convincing processes with experimental validations. 
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