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Abstract—This paper presents a new iterative data-driven 

algorithm (IDDA) for the experiment-based tuning of controllers 

for nonlinear systems. The proposed IDDA solves the 

optimization problems for nonlinear processes while using linear 

controllers accounting for operational constraints and employing 

a quadratic penalty function approach. The search algorithm 

employs first-order gradient information obtained from Neural 

Network-based process models in order to reduce the number of 

experiments needed to run on real-world processes. A data-driven 

controller tuning for the angular position control of a nonlinear 

aerodynamic system is used as an experimental case study to 

validate the proposed IDDA. 

 

Index Terms—constrained optimization; iterative data-driven 

algorithm; iterative feedback tuning; iterative learning control; 

neural networks; penalty functions. 

 

I. INTRODUCTION 

ATA-DRIVEN optimization techniques for controller 
design and tuning needing only limited measurement 
information to model complex processes  have frequently 

been reported in the literature [1]–[12]. 
Different performance indices can be aggregated into 

conveniently defined cost functions (CFs). The minimization 
of such CFs in the framework of constrained optimization 
problems (OPs) can fulfill different objectives like reference 
trajectory tracking (including model reference tracking), 
control signal penalty, disturbance rejection, etc. These 
specific features of data-driven optimization techniques 
provide efficient control and monitoring solutions for many 
complex industrial applications. 
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Iterative Feedback Tuning (IFT) is a well known data-
driven technique for iterative data-driven controller tuning 
using experiment-based updates of the controller parameters 
[1]. IFT needs only few experiments conducted on the real-
world control system (CS) to estimate the CF gradients used in 
the iterative solving of the OPs. 

Neural network (NN) and fuzzy modeling techniques have 
also been used for data-driven control, optimization, and 
monitoring applications [13]–[21]. 

Reinforcement learning, approximate dynamic 
programming, model-free adaptive control and their 
combinations using NNs, as well as supervised and 
unsupervised learning  are other representative data-driven 
controller tuning techniques [12], [22]–[26]. It should be noted 
that all these were associated with appropriately defined OPs 
[27]–[30]. 

Building upon the recent results on Iterative Learning 
Control (ILC) reported in [11], this paper proposes a novel 
iterative data-driven algorithm (IDDA) for more efficiently 
solving optimal control problems while accounting for 
operational constraints on the control signal. The algorithm 
employs an experiment-based quadratic penalty function 
approach. 

The proposed IDDA has the following characteristics, 
which are advantageous for the control of nonlinear systems: 

- as it uses experiments conducted on the real-world CS, 
it can compensate for process nonlinearities and 
uncertainties; 

- the reduced number of experiments that are required 
allows for a cost-effective implementation. 

The paper is organized as follows: Section II formulates the 
iterative controller tuning problem for nonlinear processes in 
the framework of optimal control. Section III discusses the 
NN-based estimation of the gradients needed by the search 
algorithm. Section IV presents the model-free constrained 
optimal control problem and offers a formulation of IDDA 
using quadratic penalty functions. Section V presents the case 
study of an angular position controller for a laboratory 
nonlinear aerodynamic system, used to experimentally validate 
the proposed IDDA. Conclusions are highlighted in Section 
VI. 
 

Iterative Data-Driven Tuning of Controllers for 
Nonlinear Systems with Constraints 

Mircea-Bogdan Rădac, Member, IEEE, Radu-Emil Precup, Senior Member, IEEE, 
Emil M. Petriu, Fellow, IEEE, and Stefan Preitl, Senior Member, IEEE 

D 



dx.doi.org/10.1109/TIE.2014.2300068 
 

2 

II. PROBLEM SETTING 

Single Input-Single Output (SISO) discrete-time CS can be 
described by the nonlinear process and controller equations 
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where y is the process output, u is the control signal, r is the 
reference input, v is the zero-mean stochastic disturbance 
acting on the output and it can account for a large class of 

disturbances, and ρ , ρ∈ n
Rρ , is the parameter vector of the 

controller. The nonlinear functions P and C make the model 
(1) belong to the class of nonlinear autoregressive exogenous 
(NARX) models treated in [31]. 

Several assumptions are formulated in relation with (1). The 
closed-loop CS is stable and the nonlinear operators P, C are 
smooth functions of their arguments. The nominal trajectory of 
the CS is denoted as )}(),(),({ kykukr nnn

, Nk ...0= , where N 

is the experiment length.  
A typical objective in iterative controller tuning is to search 

for the controller parameters that solve an OP starting with the 
initial solution 

0ρ  
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subject to system dynamics (1) and to operational constraints, 
where 

SD  is the stability domain of those parameter vectors ρ  

which ensure a stable CS [32]. The constraints can usually be 
formulated as inequalities imposed to )(ku  and )(ky , and to 

their rates with respect to time, )1()()( −−=∆ kukuku  and 

)1()()( −−=∆ kykyky , and they depend on the specific 

applications [33]–[42]. The formulation of the CF in (2) 
targets the trajectory tracking of the desired system output dy  

while the control effort is also penalized by the weighting 
parameter 0≥λ , and the expectation {...}E  is taken with 

respect to the stochastic disturbance v. The usual approach to 
solve the OP (2) in the unconstrained case is to employ the 
recursive stochastic search algorithm 

 













∂
∂

γ−=
=

−
+

j

J
estjjjj

ρρ
ρ

Rρρ 1
1

, (3) 

 
with the search information provided by the estimate of the 
gradient of the CF J with respect to the controller parameters 
and using, for example, second-order information as a Gauss-
Newton approximation of the Hessian of the CF given in the 
matrix 

jR . The subscript j , N∈j , is the current iteration 

number, and 0>γ j
 is the step size [1]. 

The main feature of IFT [1] is that the gradient information 
can be obtained from special experiments conducted on the 
closed-loop CS. These experiments avoid the use of the 
process model but, at the same time, they require special 
operating regimes that are different from the nominal ones. 
The experiments generate the gradients of y and u with respect 
to the controller parameters, namely ρ∂∂ /y  and ρ∂∂ /u , 

which are next used to compute both the gradient of J and the 
matrix 

jR . Although the linearity is assumed, the nonlinear-

based procedure is also feasible according to [31]. The 
gradients can be estimated, as shown in [43], not by finite 
difference approximations for modifications of ρ  but by using 

modified reference trajectories for small changes in the 
vicinity of the nominal trajectories )()()( krkrkr n−=δ , 

)()()( kukuku n−=δ  and )()()( kykyky n−=δ . The procedure 

used in [31] is based on identification of linear time-varying 
models with least squares criterion with forgetting factor which 
is different from our NN-based approach. 

The advantage of this approach is twofold. First, the closed-
loop CS is not changed for the special purpose of obtaining the 
gradient estimate. Second, the experiments are carried out in 
the close vicinity of the nominal trajectories. 

Two issues have been addressed in the literature in this 
context, viz. the number of gradient experiments which can be 
expensive for an increasing number of parameters, and the 
constrained approach [44]. This paper will show that the 
nonlinear tuning accounting for operational constraints gives 
good results, and it is also efficient as it requires a relatively 
small number of iterations and experiments. 
 

III. NEURAL NETWORK-BASED DATA-DRIVEN ESTIMATION 

OF GRADIENTS 

A. Gradient Estimation Using Neural Networks 

NNs, which are universal approximators with arbitrary 
accuracy for dynamic nonlinear systems, will be used to 
provide the gradient information need by the search algorithm. 
Each time the gradient information is necessary, the nonlinear 
map from the reference input to the process output and the 
nonlinear map from the reference input to the control signal 
can be identified using data collected under the normal 
experiment in which the CF is evaluated. Let these maps from 
r to y and from r to u be 
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The variables 

hy ρ∂∂ /  and 
hu ρ∂∂ /  can then be estimated by 

finite difference approximations as 
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where 1=δρ h

 is considered, and the numerators are 

equivalent to carrying out two simulations: one with nominal 
controller parameter vector ρ  and another one with the thh  

controller parameter disturbed with the term 
hhδρµ . The 

scalars 
hµ  are chosen to account for only small changes 

around the nominal reference input trajectory )}({ krn
 where 

the analysis holds. The variables y  and u  are obtained by 

filtering the nominal and the disturbed reference trajectories 
through the nonlinear functions 

ryM  and 
ruM , respectively. 

Our approach has the following advantages: 
- It is applicable to both linear and nonlinear systems, 

and the risk of non-desired controller parameter 
changes is mitigated until a descent direction is 
computed in order to be used in the search algorithm. 

- The closed-loop operation of the CS is kept because 
equations (4) and (5) indicate that the gradients with 
respect to the controller parameter changes are obtained 
by changing the reference trajectory. 

- The simulation with the disturbed reference input has to 
be conducted in the vicinity of the nominal trajectory 
for which the NN is trained, and this allows for using 
simple NN architectures with few neurons (parameters). 

- The numerical differentiation issues that occur in noisy 
environments are mitigated because the obtained 
trajectories are not affected by the noisy data involved 
in NN training. 

B. NN Training Using Iterative Learning Control 

We will use NN batch learning in order to ensure a smooth 
operation of the learning system in terms of the controller 
tuning. Adaptive learning can also be employed for repetitive 
control actions [45] such as the ones in our paper. An ILC-
based approach is developed with this respect. 

We are using a feed-forward NN architecture consisting of 
one hidden layer with a hyperbolic tangent activation function 
and a single linear neuron. The input-output map is: 
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where 1

10 ]...[ +∈= HT
Hwww RW  is the vector of 

output layer weights, ])(...)(1[ 11 xVxVσ
T

HH

TT σσ=  is 

the vector of hidden layer neurons outputs with the hyperbolic 
activation tangent activation functions 

Hmxxm ...1 ),tanh()( ==σ , and the superscript T indicates the 

matrix transposition. The first term in σ  corresponds to the 
bias of the output neuron. Each hidden layer neuron is 
parameterized by its vector of weights 

110 ]...[)( +∈= nunu

mmm

Tm vvv RV , Hm ...1= , which 

multiplies the input vector ]...[ 10 nu

T xxx=x . Each 

vector m
V  includes the weight 0

mv  of the bias of th
m  neuron. 

Here 1+nu  is the number of inputs to the network, and H is 
the number of hidden layer neurons. The time domain index is 

Nk ...0= . 
The NN is treated as a nonlinear multi input-multi output 

dynamical system considered in the iteration domain 
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where 
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where j is the iteration index, 

i
v

j

w

j uu ,  are the input vectors, and 

the weight vectors i

jj VW ,  previously defined are viewed as 

the state vectors of the dynamical system. The vector 
jX  can 

be regarded as a trial-repetitive time-series disturbance input, 
but it can be also regarded as a time-varying parameter vector 
of the nonlinear system (7). The vector 

jY  is the output of the 

nonlinear dynamical system (7). 
Using the ILC framework, the dynamical system (7) is 

transformed into a static map from the inputs to the outputs. 
ILC usually focuses on the minimization of the tracking error 
between the actual output and a desired output using a proper 
input. The desired output vector in our case is 

1)]1()...1([ +∈+= NT

ddd Nyy RY , with )(ky d
 – the desired 

process outputs for 1..1 += Nk . Therefore, the batch training 
of the NN can be regarded as a supervised learning approach 
where the purpose is to minimize the tracking error 

djj YYE −=  referred to also as training error. However, the 

input at each iteration can be derived in the framework of 
norm-optimal ILC as the solution to the OP 
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RuuuU  

is the stacked vector of inputs, 0f
T

RR =  and 0f
T

QQ =  
of proper dimensions are symmetric positive definite diagonal 
matrices, 

djj YYE −= ++ 11
 is the tracking error at iteration 
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1+j , and •  is the Euclidean norm of the vector • . The 

penalty on 
jU  in (9) is used to prevent over-fitting. 

The typical approach of nonlinear least squares is applied in 
order to obtain the analytical solution to the OP (9). The 

linearization of )),(,()1( 111 kky i

j

T

jj xVσW +++ =+ ,...0 Nk =  

is carried out around i

jj VW ,  for small variations of 
i

v

j

w

j uu ,  

by considering the output as a nonlinear function of the weight 
vectors ,...0)),(,,()1( 111 Nkkfky i

jjj ==+ +++ xVW  and the 

input vector )(kx  as a parameter vector. The Taylor series 

expansion yields 
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neglecting the higher order terms in (10), the result is 
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Then, by stacking the 1+N  outputs over the time argument 

k we obtain 
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the OP (9) can be rewritten as 
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Using the matrix derivation rules with respect to vectors and 

noting that X is symmetric as R and Q are symmetric, it 
follows that the analytic solution to the quadratic OP (13) is 
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The matrix 

jK  can be obtained easily as the matrices 

jj EΨ ,  can be computed at the current iteration. The optimal 

vector *
jU  contains the increments of the NN weights. Using 

the partitioning T
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The update laws (15) are of ILC type [46], depending on the 

error at the current iteration. Thus, solving (9) at each iteration 
the NN training has been expressed as an ILC learning 
scheme. The norm-optimal ILC formulation is more general 
since the CF also incorporates the penalty on the weights, and 
it allows for a degree of freedom in the learning. 
 

IV. CONSTRAINED OPTIMIZATION ALGORITHM USING 

PENALTY FUNCTIONS 

The OP that ensures the reference trajectory tracking with 
control signal constraints and with control signal rate 
constraints is defined as 
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and it aims the minimization of the expected mean squared 
control error ),()(),( ρρ kykrke −= . 

This type of problems can conveniently be solved in the 
deterministic case using the interior point barrier algorithm. As 
shown in [47], the constrained OP is transformed into an 
unconstrained OP using penalty functions. We propose the 
following augmented CF which accounts for inequality 
constraints on the control signal saturation and on the control 
signal rate: 
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where the positive and strictly increasing sequence of penalty 
parameters 

0}{ ≥jjp , ∞→jp , guarantees that the minimum 

of the sequence of augmented CFs 
0)}(

~
{ ≥jp j
J ρ  will converge to 

the solution to the constrained OP (16), m, cm ...1= , is the 

constraint index, 0)( >ρmq  is the thm  constraint. The OP (17) 

is solved using a stochastic approximation algorithm which 

makes use of the experimentally obtained gradient of )(
~

ρ
jpJ . 

The quadratic penalty function )(ρφ  in (17) uses the 

maximum function which in this case is non-differentiable only 
at zero. Given that )(ρφ  is Lipschitz and non-differentiable at 

a set of points of zero Lebesgue measure, the algorithm visits 
the zero-measure set with probability zero when a normal 
distribution for the noise is assumed [47]. Therefore, using 
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the expression of the gradient of the CF )(

~
ρ

jpJ  given in (17) 

at the current iteration j with respect to the parameter 
hρ  is 
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The first term in (19) corresponding to the gradient of the 

original CF requires the knowledge of the gradient ρ∂∂ /)(ky , 

and the second term in (19) requires the gradients of )(ku  and 

)(ku∆  with respect to ρ . All these variables can be estimated 

using the NN-based mechanism given in (5). The derivative of 
the control signal rate with respect to the parameter vector ρ  

is estimated using the finite differences approximation 
approach for the sampling period tδ  
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The proposed IDDA algorithm consists of the following 

steps: 
Step S1. Start with the initial ρ  referred to as 

0ρ . Choose 

the upper and lower bounds for the control signal, the upper 
and lower bounds for the control input rate and the nominal 

reference input signal. Choose the tolerance 
Ntol  for stopping 

the stochastic search algorithm. Set the iteration number for ρ  

and 
0}{ ≥jjp  to 0=j . Choose the sequence 

0}{ ≥jjp  and 
0γ . 

Step S2. Conduct the normal experiment with the current 
jρ  

for the nominal reference input. Evaluate the objective 

function )(
~

jJ ρ . Train the models j

ryM  and j

ruM  at the 

current iteration using proposed ILC approach. 
Step S3. Calculate the disturbed reference trajectories 

)}({ krhδ  to be used in (5) and use j

ryM  and j

ruM  to estimate 

ρ∂∂ /)(ˆ ky , ρ∂∂ /)(ˆ ku  and ρ∂∆∂ /)(ˆ ku  using (5) and (20). 

Evaluate the gradient of the CF using (19). 
Step S4. Calculate the next controller parameter vector 

1+jρ  
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Step S5. If the gradient search has converged in terms of the 

maximum allowed decrease of the CF, 
Njj tolJJ <− − )(

~
)(

~
1ρρ , 

stop the algorithm. Otherwise set 1+= jj  and jump to S2. 

 

V. EXPERIMENTAL CASE STUDY 

The case study deals with the angular positioning of the 
vertical motion of a twin-rotor aero-dynamical system 
experimental setup [48]. A rigid beam supports at one end a 
horizontal rotor which produces vertical motion and at the 
other end a vertical rotor causing horizontal motion. The 
horizontal position is considered fixed in this case study. The 
nonlinear equations that describe the vertical motion are [49] 
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where uU v =(%)  is the control signal represented by the 

PWM duty-cycle corresponding to the input voltage range of 
the DC motor, V 24V 24 ≤≤− u , )/( sradvω  is the angular 

speed of the rotor, yradv =α )(  is the process output 

corresponding to the pitch angle of the beam which supports 
the main and the tail rotor, )/( sradvΩ  is the angular velocity 

of the beam. The expressions of the other parameters and 
variables related to (22) are given in [49], and the parameter 
values are [48], [50] 
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The nonlinear model (22) is not used in the tuning process 
except for obtaining an initial controller which can also be 
obtained by model-free approaches using the Ziegler-Nichols’s 
tuning method or Virtual Reference Feedback Tuning [2]. 

Next we use a linear PID controller with the transfer 
function )1/()()( 12

3
1

21
1 −−−− −ρ+ρ+ρ= qqqqH  and with the 

parameter vector T][ 321 ρρρ=ρ  for this SISO CS. The 

initial ρ  is T]00025.000080.001185.0[0 −=ρ . The 

controller is tuned to solve the OP (2) with 0=λ  and with the 
two sets of constraints, 22.0)(1.0 ≤≤− ku  and 

04.0)(04.0 ≤∆≤− ku . The sampling period is set to 0.1 s and 

the experiment length is 90 s, i.e., 900=N ; therefore, 
36009004 =⋅  inequality constraints are generated for the 

control signal and for the control signal rate. The desired 
trajectory specified as a reference input to the CS is a step of 
amplitude 0.2 rad (approximately 11.45°) for 45 s and next 
zero for the remaining 45 s. 

The NN architecture used for the gradient estimation 
consists of one hidden layer with six neurons and one output 
layer with one neuron. A hyperbolic tangent function is 
employed as the hidden layer activation function, and a linear 
function is employed as the output neuron activation function. 
This NARX architecture uses the last two outputs and the last 
two inputs in order to obtain the output prediction. The same 
simple architecture is used for both 

ryM  and 
ruM . The inputs 

of the two NNs are ])1()()1()(1[)( −−= krkrkykykT

ryx  

for 
ryM and ])1()()1()(1[)( −−= krkrkukukT

rux  for 

ruM . The outputs of the NNs are process output )(ky  and the 

control signal )(ku  from (4). 

The training of the two NARX architectures is carried out in 
the ILC framework using the guidelines from Section III.B. 
Each neuron in the hidden layer has five parameters, i.e., four 
weights and one bias. The output layer has seven weights 

including the bias. We trained the weight vectors 17×∈ RW  

and 6...1 ,15 =∈ × ii RV . The initial values of the hidden 

neurons parameters are chosen from a normal distribution 
centered at zero with variance 1. Because of the special 
structure of the NN which is linear in the output weights vector 
W, a least squares initialization of W was performed. 

The NN-based identification is carried out on the nominal 
trajectories of the closed-loop CS for the initial controller 
parameters 

0ρ . Only the results concerning the identified map 

ryM  are given here. For an experiment of 90 s, 898 samples 

are used for training. For the norm-optimal ILC problem, the 
weighting matrices were chosen as 

898IR =  and 

370005.0 IQ ⋅= , where 
ζI  is the general notation for the thζ  

order identity matrix. The training error throughout the 
iterations of our algorithm together with the initial error and 
final error after ILC-based scheme are shown in Fig. 1. Fig. 1 
illustrates the identification of 

ryM  for the first IFT iteration 

with the initial controller in the loop. 
 

 
Fig. 1.  Network training error for 

ryM  at the first iteration of the algorithm. 

 

The initial training error norm results after the least squares 
initialization of the output weights vector W. The results with 
the training of the neural network using the ILC framework 
show a decrease of the training error of about three orders of 
magnitude in four iterations. Thus the learning in the ILC 
framework is feasible for the current NN architecture. 

The IDDA is run for 20 iterations. The step size sequence in 
(3) is chosen as 003.0  ,/ 0

65.0
0 =γγ=γ jj

, and the sequence 

0}{ ≥jjp  as 7.0007.0 jp j ⋅= . The matrix 
jR  is set as the 

identity matrix. The final values of the controller parameters 
after optimization are T]00250.000360.001480.0[20 =ρ . 

The evolution of the CF throughout the iterations is 
presented in Fig. 2 along with the evolutions of the penalty 
function and of the controller parameters. The evolutions of 
the pitch position, control signal and control signal rate over 
20 iterations of our IDDA are given in Fig. 3. 

Fig. 3 illustrates that the penalty function tends to get large 
and is weighted more in the CF due to the sequence 

0}{ ≥jjp . 

However, the gradient of the CF accounts for the constraint 
violation and drives the controller parameters towards the 
minimization of the CF. In the long run, the penalty function is 
weighted more and the search continues until both the control 
error is minimized and the constraints are fulfilled. 
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Fig. 2.  Cost function, penalty function and controller parameters versus 

iteration number. 
 

Fig. 3 clearly shows the improvement of the CS behavior 
after only 20 iterations that correspond to 20 experiments. The 
improvements are visible even at the second iteration. At the 
final iteration, the control signal violates the lower bound 
constraint only mildly. The control signal rate increases from 
one iteration to another until it reaches the upper and lower 

bounds constraints and violates them only mildly. The 
behavior has to be correlated with the strong nonlinearity of 
the process and with the slightly chaotic behavior shown in the 
experiments which is due to the static frictions in the axis of 
the moving mechanical parts. In the up-lifting motion the 
aerodynamic thrust has to compensate for the gravitation effect 
whereas for the down-lifting motion the gravity helps. Other 
discussions can be formulated for different nonlinear processes 
[52–58]. 

VI. CONCLUSION 

The proposed IDDA for controller tuning has the following 
advantages: (i) other integral-type constraints can be added to 
the OP without additional experiments and without an increase 
in complexity, (ii) nonlinear controllers can easily be 
incorporated in this framework enhancing thus its generality. 
(iii) the model needs to be valid only around the nominal 
trajectory where the gradients are generated, and not within a 
wide operating range, (iv) it conveniently deals with numerical 
differentiation issues in noisy environments. 

 

 
Fig. 3.  Controlled output, control signal and control signal rate throughout 20 iterations of IDDA. The constraints are illustrated with dotted lines. 

  

Experiments have demonstrated the validity of the 
proposed NN-based estimation of CF gradients. The batch 
training in an ILC framework was also demonstrated. Other 
NN architectures, such as the resource-allocating networks 
including radial basis activation functions, with or without 
dynamic hidden unit allocation, can also be used [51]. The 
optimization approach using quadratic penalty functions 
ensures the operation in a stochastic environment. Additive 
noise applied to the reference input can be used in order to 
provide sufficient excitation for the NN-based identification. 

Future research will focus on the development of 

appropriate tools for stability analysis. The stability can be 
indirectly dealt with by ensuring that the steps of the search 
algorithm are small enough and always conducted in the 
negative direction of the gradient and also including a penalty 
on the control energy in the original cost function. Using the 
numerical optimization approach, the convergence to the 
global optimum will further be addressed. A comparison of the 
proposed algorithm’s performance relative to other known 
numerical solvers for nonlinear constrained optimization also 
needs to be carried out in the future. 
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