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Abstract—This paper proposes a data-driven algorithm that 

solves a reference trajectory tracking problem defined as an 

optimization problem. The new data-driven reference trajectory 

tracking algorithm (DDRTTA) solves the optimization problem in 

the framework of Iterative Learning Control (ILC). The 

DDRTTA updates the reference input sequence using an 

experiment-based approach which accounts for operational 

constraints and employs an interior point barrier algorithm. 

Therefore the DDRTTA combines the advantages of data-driven 

control and ILC. A case study which deals with the angular 

position control of a nonlinear servo system is included to validate 

the DDRTTA by experimental and simulation results. 

 

Index Terms—Data-driven reference trajectory tracking, 

experimental results, Iterative Feedback Tuning, Iterative 

Learning Control, lifted form representation. 

 

I. INTRODUCTION 

ATA-DRIVEN optimization techniques for controller 
design offer the improvement of control system (CS) 

performance using no a priori model information about the 
controlled process or little such information [1]–[6]. The CS 
performance improvement offered by data-driven techniques is 
achieved by simple specifications and easily interpretable 
performance indices. These indices are usually specified in the 
time domain (e.g., rise time, overshoot, settling time), and they 
are aggregated in integral-type or sum-type objective functions 
(o.f.s) such as the Linear Quadratic Gaussian (LQG) ones. The 
minimization of the o.f.s in constrained optimization problems 
can fulfill different objectives as reference trajectory tracking 
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(including model reference tracking), control signal penalty, 
disturbance rejection, etc. 

The main data-driven techniques that carry out the iterative 
experiment-based update of controller parameters are Iterative 
Feedback Tuning (IFT) [7], Correlation-based Tuning [8], 
Frequency Domain Tuning [9], Iterative Regression Tuning 
[10], Simultaneous Perturbation Stochastic Approximation 
[11], [12], pulse response based control [13], Markov data-
based LQG control [14], data-driven or data-based predictive 
control [15]–[17], LQ data-driven control [18], and the most 
popular non-iterative technique is Virtual Reference Feedback 
Tuning (VRFT) [19] These techniques use various approaches 
to ensure model-free controller tuning. However, the tuning for 
reference trajectory tracking does not guarantee robust 
stability or robust performance. Some recent data-driven 
control results ensure robust stability/performance while still 
preserving the model-free property; these results try to avoid 
the direct process identification and to infer the results from 
data or from easy-to-obtain non-parametric CS models such as 
the frequency response functions [9], [20]. 

The reference trajectory tracking can be considered as a 
reference input design over an initial CS with a priori tuned 
controllers for stability and disturbance rejection. The 
reference trajectory tracking is thus defined as an open-loop 
optimal control problem. The iterative experiment-based 
solving of this optimization problem makes use of IFT, where 
a gradient search algorithm is used and the gradient 
information is obtained experimentally without involving any 
process knowledge. With this regard the iterative controller 
parameter update laws are replaced by reference input 
sequence update laws and the Iterative Learning Control (ILC) 
framework [21], [22] is applied. General approaches to ILC-
based solving of optimal control problems are reported in [23], 
[24], with time and frequency domain convergence analysis 
conducted in [25], stochastic approximation treated in [26], 
and output tracking given in [27]. 

Several techniques dealing with data-driven modeling and 
control are neural networks and fuzzy models [28]–[40]. Some 
data-driven techniques used in process control, associated with 
appropriately defined optimization problems [41]–[45], 
consists of Reinforcement Learning (RL), approximate 
dynamic programming and model-free predictive control. The 
difference between RL and our approach is that RL [46]–[48] 
is unsupervised learning whereas our approach is a form of 
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supervised learning, but the similarities between these two 
approaches are: 

- The interaction with the unknown environment for 
collecting data. In our approach we aim to reduce the 
information about the process which is subject to 
control. Hence RL and reference trajectory tracking are 
connected by their data-driven approaches. 

- The dynamic programming underlying problem. At 
each time, a decision is made to maximize the reward. 
The reward in our setting is to minimize the o.f. defined 
as the difference between the controlled process output 
and the prescribed reference input trajectory. We do not 
solve the problem using dynamic programming 
techniques, but we transform it into a static 
optimization problem and we solve it offline. This is 
carried out after trials based on data collection and o.f. 
evaluation. In dealing with the optimization problem we 
have to cope with the stochasticity of the real world 
affecting the collected data. Our approach is a direct 
policy search using stochastic optimization. 

The main contribution of this paper with respect to the state-
of-the-art is a new data-driven reference trajectory tracking 
algorithm (DDRTTA) which iteratively solves an optimal 
control problem that ensures reference trajectory tracking. The 
DDRTTA employs an entirely experimental-driven interior 
point barrier (IPB) algorithm which allows for ILC-based 
optimization accounting for several operational constraints. 
The importance and advantages of this new idea with respect 
to the previously analyzed literature are: 

- The DDRTTA uses experiments conducted on the real-
world CS; therefore it can compensate for process 
nonlinearities and uncertainties. 

- The DDRTTA is characterized by a reduced number of 
experiments which ensures cost-effective 
implementations. 

Therefore the data-driven optimization algorithm for controller 
design suggested in this paper is general and applicable to 
many complex industrial systems. 

The paper is structured as follows. The next section presents 
the problem setting related to the reference trajectory tracking 
problem solved by data-driven iterative optimization 
techniques. Section III considers the experiment-based model-
free estimation of the gradient of the o.f. and offers 
convergence analysis details. Section IV gives the model-free 
constrained optimal control problem and formulates the 
DDRTTA. Section V discusses the DDRTTA application on a 
case study dealing with the position control of a nonlinear 
servo system and validates the new DDRTTA. The 
conclusions are outlined in Section VI. 

 

II. PROBLEM SETTING 

The CS is dedicated to reference trajectory tracking by 
means of a reference model which specifies the performance 
indices. The process is characterized by the discrete time 

Linear Time-Invariant (LTI) Single Input-Single Output 
(SISO) model 

 

)(),()(),(),,( 11 kvqSkrqTkry −− += ρρρ , (1) 

 
where k is the discrete time argument, )(ky  is the process 

output, )(kr  is the reference input, )(kv  is the zero-mean 

stationary and bounded stochastic disturbance acting on the 
process output and accounting for various types of load or 
measurement disturbances, )],()(1/[1),( 111 −−− += qCqPqS ρρ  

and ),(1),( 11 −− −= qSqT ρρ  are the sensitivity function and 

the complementary sensitivity function, respectively, )( 1−qP  

is the process transfer function, ),( 1−qC ρ  is the controller 

transfer function, parameterized by the parameter vector ρ  

which contains the tuning parameters of the controller, and 
1−q  is the one step delay operator. ρ  will be omitted as 

follows in some equations for the sake of simplicity. 
The reference trajectory )(ky d  can be generated by a 

reference model. The control signal )(ku  is not explicit in (1), 

but it may represent interest in control when constraints are 
required and the control effort should be manipulated. The 
objective of trajectory tracking is the minimization of the o.f. J 
expressed as the expected value for the Euclidean norm of the 
tracking error over the finite time horizon N: 
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dt kykryNeErJ ρρ , (2) 

 
where )(),,(),( kykryke dt −= ρρ  is the tracking error and 

operational constraints can be accounted for. 
Using (1), the minimization of (2) can be carried out by 

modifying either one or both the design variables ρ  and r 

which translates (2) to a controller tuning or to a reference 
input modification. As shown in [49], the modification of 
either of the design variables creates the same effect in )(ky  

as it is pointed out in the first order Taylor series expansion 
around the nominal values of ρ  and r, with the notations 

nρ  

and 
nr , respectively: 
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where h.o.t. points out the higher order terms. 

For the simultaneous tuning of ρ  and r, Eq. (3) can be 

interpreted as a two-degree-of-freedom (2-DOF) structure 
tuning, where the feedback controller )(ρC  is designed for 

disturbance input regulation and the feedforward filter )(ρF  

is designed for reference input tracking as illustrated in Fig. 1, 
with σ  – the step reference input and e – the control error. 
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Fig. 1.  2-DOF control system structure for reference trajectory tracking. 
  

As mentioned in Section I, the trajectory tracking can be 
formulated in terms of the following open-loop optimal control 
problem expressed as the static optimization problem 

 

.  

(1)  

),,(minarg*

sconstraintloperationa    someto  and

dynamics    systemto  subject

rJr
r

ρ=

 (4) 

 
Model information about the process is essential in order to 
solve the problem (4) analytically, but the discrepancies 
between the model and the reality could still compromise the 
controller design. IFT can be an alternative since the tuning is 
based on a gradient search algorithm for which the gradient 
information is obtained experimentally without any process 
knowledge. The following iterative update law can be 
employed and expressed as a steepest descent approach: 

 

}/{1
jrrjjj rJestrr

=+ ∂∂γ−= , (5) 

 
where the subscript j indicates the iteration number, N∈j , N 

is the set of natural numbers, the estimate of the gradient 

}/{
jrr

rJest
=

∂∂  should be obtained experimentally, and 
jγ  is 

a positive step-scaling parameter. This approach basically 
integrates the search algorithm (5) into an ILC problem to 
apply the ILC framework [22]–[24]. For a relative degree n of 
the closed-loop CS transfer function )( 1−qT , the lifted form 

representation for an N samples experiment length in the 
deterministic case is 

0 YRTY += , with the matrices 
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 (6) 

 
R is the reference input vector which contains the reference 
input sequence over the time interval 10 −−≤≤ nNk , Y is 
the controlled output vector, 

it  is the i
th impulse response 

coefficient of )( 1−qT , T is a lower-triangular Toeplitz matrix, 

0Y  is the free response of the CS due to nonzero initial 

conditions, and the superscript T indicates matrix 
transposition. Zero initial conditions can be assumed without 
loss of generality, and the tracking error vector E is 

dd YRTYYE −=−=  , where d
Y  is the reference trajectory 

vector. Knowledge on T would provide the optimal solution 

which makes the tracking error zero, i.e., d
YTR

1−= . 
However, T can be ill-conditioned and it is always subject to 
measurement errors; therefore 1−

T  cannot be used. 
 

III. EXPERIMENT-BASED MODEL-FREE ESTIMATION OF 

GRADIENT AND CONVERGENCE ANALYSIS 

The vector form of (5) in the deterministic case is 
 

j

J
jjj

RRR
RR

=
+ ∂

∂
γ−=1

. (7) 

 
As analyzed in Section I, the combination of (4) and (5) as 

an optimization approach to the ILC problem is treated in 
[24]–[27], and a new approach will be presented as follows. 
The o.f. (2) is quadratic with respect to the vector R and the 
gradient of J in the deterministic case at each iteration j is 

 

j

T

j

J
ET
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2=
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. (8) 

 
Equation (8) suggests that the gradient information can be 

obtained either by an experimentally measured T or by using a 
special gradient experiment at each iteration. The choice of 
one or another one of these options depends on the 
measurement noise which affects the quality of T and on the 
possibility to conduct experiments on the CS. 

The gradient experiments may affect the nominal operating 
regimes. To avoid this, gradient experiments are conducted in 
terms of steps A to D leading to the vector 

j

T
ET : 

Step A. Record the tracking error at the current iteration in 
the vector 

jE . 

Step B. Define the reversed vector )( jrev E  
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)])1(...)0(([)(
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enNe
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−−=
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 (9) 

 
Step C. Apply )( jrev E  as reference input to the CS and 

obtain the output vector )( jrev ETY = . 

Step D. Obtain 
j

T ET  as 

 

))( ( jj

T revrev ETET = , (10) 

 
and use it to obtain the gradient in (8). 
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The four steps of this relatively simple model-free approach 
can be used to obtain the gradient information. 

The convergence of the steepest descent approach is briefly 
studied as follows in the deterministic setting. Following (8), 
the tracking error vector at the next iteration is 

 

.)2(]2)([

)2(
1

11

j

T

j

d

j

T

j

d
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d

j

T

jj

d
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−

++  (11) 

 
The asymptotic convergence is ensured for the spectrum of 

the matrix )2( T

jTTI γ−  in the unit disk. However, from a 

practical point of view, monotonic convergence is preferred in 
order to ensure a decrease of the tracking error at each 
iteration. This can be achieved by making the L2-induced norm 
(the spectral norm) of )2( T

jTTI γ−  less than unity to be able 

to express the convergence condition 
221 |||||||| jj EE ≤+
. This 

condition together with (11) lead to another expression of the 
convergence condition 1)2( <γ−σ T

jTTI , where σ  stands 

for the maximum singular value. Therefore, a suitable 0>γ j
 

can be found at each iteration as an offline solution to the 
nonlinear optimization problem 

 

.1)2(   

,minarg*
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γ
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j

TTI

 (12) 

 
When T is obtained via informative experiments such as 

impulse response, uncertainties due to measurement errors 
have to be accounted for. Lifted form representations under 
multiplicative uncertainty can be used with this regard and 

expressed as )(
~

ΔITT += , where the bounds for Δ  can be 

estimated experimentally and can be included in (12). 
The stochastic properties of ILC algorithms are studied in 

[25], [26]. Robbins-Monro’s stochastic approximation 
algorithm can be employed to find the zero of the gradient of 
the o.f. The stochastic convergence conditions are: 

- I. The estimated gradient of the o.f. is unbiased. 
- II. The step size sequence 

0}{ ≥γ jj
 converges to zero 

but not too fast. 
Condition I. is fulfilled as in the gradient experiments 

scheme the recorded error and the output obtained with the 
error as input are trial-uncorrelated with respect to the noise. 
Condition II. is guaranteed for the following choice of 

jγ : 
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IV. DATA-DRIVEN ALGORITHM 

The operational constraints regarding the saturation of 

actuators or the bounds on the process state variables are very 
important in the majority of complex industrial control systems 
applications. Different numerical algorithms can be employed 
to solve the optimization problem (4) for such systems. 
However, if the model-free approach proposed in the previous 
section is applied, this leads to a small number of iterations 
and to a small number of informative experiments that can 
affect the normal operating regimes. 

The lifted form representations allow the expression of a 
particular form of the optimization problem which can be of 
interest. Assuming the deterministic case, let 

)()( mNmN

ur

−×−ℜ∈S  be the lifted map that corresponds to the 

transfer function )()()( 111 −−− = qSqCqSur
, where ℜ  is the set 

of real numbers. Using the notation m for the relative degree of 

)( 1−qSur
, nm ≤ , the lifted form representations are 
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The control signal vector can be expressed as RSU ur= , 

where 1)( ×−ℜ∈ mN
R  is a vector of greater length than in (6), 

for which 1)( ×−ℜ∈ nN
R . Therefore, a truncation of 

urS  

corresponding to the leading principal minor of size nN −  is 

considered such that )()( nNnN

ur

−×−ℜ∈S . This is because we 

want the same R of size nN −  to be tuned and this in turn will 
allow only nN −  (out of mN − ) constraints imposed to U to 
be shown as follows, and the affine constraint 

maxmin )( URUU ≤≤  is imposed on R. So even though we 

could benefit from the dimensionality of the map 
urS , we 

choose only the appropriate size in order to tune the initial R 
from (6). The o.f. )(RJ  is quadratic with respect to R: 
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with TTQ

T=  – positive semi-definite, TTMq   2=  and 

MM
T =α . The optimization problem which ensures 

reference trajectory tracking is expressed as 
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Efficient convex quadratic programming solvers can be 
applied to (16), such as the IPB algorithm [50]. The IPB 
algorithm will be adapted to this problem as follows in order 
to obtain the DDRTTA which solves (16). The idea is to 
transform (16) into the unconstrained optimization problem 

 

))(    (minarg*
RRqRQRR

R
φκ+α++= T , (17) 

 

with 0>κ , and ∑
=

−−=φ
c

i

T

iiu
1

)~~log()( RsR  is the logarithmic 

barrier function, where 
iu~  is the ith element of of U

~
, T

is
~  is the 

i
th row of S

~
, and )(2 nNc −=  is the number of constraints. 

The violation of constraints makes )(Rφ  and next the o.f. go 

to infinity. 
The o.f. including the barrier function can first be evaluated 

in one experiment at the current reference input since the 
control signal can be recorded. An experiment-based informed 
search can next be applied to (17), and this requires the 
gradient of the o.f. with respect to R. The gradient of the first 
three terms of the new o.f. in (17) can be obtained by the 
informative experiments indicated in the previous section. The 
gradient of the remaining of the o.f. can also be obtained 
experimentally as shown in the sequel. 

For an N length experiment, 1)( ×−ℜ∈ nN
R , )(2 nN −  

constraints are available for a lower and upper bounded input 
as all constraints are applied to the first nN −  control signal 
samples starting with )(mu . Accepting that the optimization 

problem (17) and )(Rφ  implicitly have only nN −  constraints 

for the upper bound of the control signal, it can be shown by 
chain derivation that the gradient of )(Rφ  is 
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and ε  can be evaluated experimentally at the current point R. 
But this gradient can be obtained by conducting a special 
gradient experiment which is very similar to the one used for 
the gradient estimation of the original o.f. That is also the 
reason to split the new o.f. constraints in two ones (and hence 
the barrier function in two components) as we need an extra 
experiment for the rest of nN −  constraints in order to take 
advantage of the dimensionality of the map 

urS . Therefore, the 

new gradient of the o.f. in (17) is 
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where )(1

jG Rε  holds for the first nN −  constraints, )(2
jG Rε  

holds for the rest of nN −  constraints, and the subscript G 
stands for gradient. The gradient can be obtained in three 
special experiments at each iteration to be shown as follows. 

In order to accelerate the convergence, the following 
estimate of the Hessian of the o.f. can be used for a Newton 
search: 
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where )(1 Rε H

 and )(2 Rε H
 are expressed for each of the two 

different sets of nN −  constraints. T and 
urS  can be recorded 

from experiments, and both )(1 Rε H
 and )(2 Rε H

 can be 

evaluated after a normal experiment at the current R with no 
other extra effort. Here the subscript H stands for Hessian. A 
Gauss-Newton approximation of the Hessian can also be used. 

The typical behavior of the IPB algorithm is a multiple stage 
optimization starting with an initial 0κ  and decreasing the 
current κ  by a constant factor µ  at each outer loop iteration 

(referred to as stage) until the desired accuracy is reached. At 
each stage, an iterative procedure consisting of a Newton or 
steepest descent search is conducted up to a specified accuracy 
level. The inner search is carried out in terms of the iterative 
procedure called iteration. 

Our DDRTTA employs the IPB algorithm combined with a 
Newton search. A stage of the algorithm consists of two steps 
and an iteration of the algorithm consists of four sub-steps. 
The DDRTTA is summarized in terms of steps S1 and S2: 

Step S1. Choose 1  ,00 >µ>κ , and start with a feasible 

point for R0 (the initial guess of R). Choose the upper and 
lower bounds for the control signal and generate the desired 

reference trajectory vector d
Y . Choose the tolerances for 

stopping the inner and the outer search procedures, 
Ntol  and 

IPBtol . Set the outer iteration index for κ  to 0=κj  and for R 

to 0=j . Assume that T and 
urS  are estimated from 

measurements, and carry out the sub-steps S-s1 to S-s4: 
- Sub-step S-s1. Choose 

0γ  and reset the inner iteration 

index to 0=i . At each iteration of the search algorithm 
carry out the following sub-steps: 

- Sub-step S-s2. Conduct a normal experiment with the 
current 

jR . Evaluate the o.f. in (17) and the vector 

variables 2121 ,,, HHGG εεεε . Conduct a gradient 

experiment according to the approach given in Section 
III to find the gradient of the first three terms of the o.f. 
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in (17) which corresponds to 
j

T

j EE . Conduct a 

gradient experiment in terms of Section III and apply 
(18) with 1

Gεε =  to find the gradient which corresponds 

to half of the constraints. Conduct another gradient 
experiment as shown in Section III and apply (18) with 

2
Gεε =  to find the gradient which corresponds to the 

other half of the constraints. 
- Sub-step S-s3. Compute the gradient using (19), 

evaluate the Hessian using (20) for T, 
urS  and 21 , HH εε . 

Calculate the next reference input sequence using the 
following modified expression of (7): 

 

j

J
jijj

RR
R

RHRR

=

−
+ ∂

∂
γ−=

~
))(( 1

1
. (21) 

 
Set 1+= ii , 1+= jj . 

- Sub-step S-s4. If the Newton search has converged in 
terms of a minimum tolerated decrease in the o.f. 

Njj tolJJ <− − )()( 1RR , jump to next step, otherwise 

go to sub-step S-s2. 

Step S2. If the search is satisfactory with the current κκ j , 

IPB

j tolnN <κ− κ)(2  then stop. Otherwise set µκ=κ + /1 kk jj , 

1+= κκ jj , and jump to step S1. 

The parameters 
Ntol , 0>Ntol , and 

IPBtol , 0>IPBtol , 

indicate the accepted tolerance for the increment of J and for 
the stop condition, respectively. 

The simplest initial feasible point for R0 is to choose it 
equal to zero assuming zero initial conditions for the process. 
This approach can also be made suitable for nonzero initial 
conditions by choosing a corresponding R0. Therefore the 
constraints are not violated and the feasibility is preserved. 

In the stochastic case, the constraints may be violated in the 
IPB algorithm due to the noise affecting the closed-loop CS. 
This in turn will drive the o.f. to infinity even if the 
deterministic counterpart of the signals (the control signal 
here) does not cross the feasible region boundaries. An 
alternate solution to this case is given in [51], with the 
following expression of the o.f. with penalty: 
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where h is the constraint index, ch ...1= , 0  , >pp , is a 

penalty parameter, and cT

c ℜ∈λλ= ]...[ 1λ  can be 

regarded as an estimate of the Lagrange multiplier vector. If 

0}{ ≥nnp  is a positive and strictly increasing sequence of 

penalty parameters and 
0}{ ≥nnλ  is a bounded non-negative 

sequence of Lagrange multiplier vectors, then the minimum of 

0)},(
~

{ ≥nnpn
J λR  will converge to the solution to the constrained 

optimization problem (16). The minimization of (22) is carried 
out using a stochastic approximation algorithm and the 
gradient of the o.f. requires knowledge of the same gradient 
information as in the case of the IPB algorithm. 
 

V. CASE STUDY AND DISCUSSION OF RESULTS 

The case study deals with the angular position of the 
experimental setup built around an INTECO DC servo system 
laboratory equipment [20]. The nonlinear state-space model of 
the process is 
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where 0  , ≥ℜ∈ tt  is the continuous time argument, u is a 

pulse width modulated duty cycle, d is the disturbance input, m 
is the output of the saturation and dead zone static nonlinearity 
(the first equation in (23)) with the parameters 0, >muk  and 

cba uuu ,0 << , and the parameters of the linear dynamics in 

(23) are 
1Pk  and ΣT . T

P ttt ])()([)( ωα=x  is the state vector, 

)()( tty α=  is the angular position and )(tω  is the angular 

speed. 
The dynamic counterpart of the model has not been used in 

the tuning procedure. Only the dead zone is compensated 
using an inverse nonlinearity. Other effects such as viscous 
friction introduce the randomness in all measurements. 

The values of parameters in (23) are: 15.0=au , 

1== cb uu , 17.1)/(1, =−= abmu uuk  and s 9.0=ΣT . The 

process transfer function )]9.01(/[140)( sssP +=  is a good 

approximation of (23) according to [20]. )(sP  is used in 

tuning the continuous-time controller in terms of the Extended 
Symmetrical Optimum method [52] which uses a single design 
parameter in tuning equations for PI and PID controllers 
dedicated to many industrial servo system applications [53]–
[63]. The discrete-time feedback PI controller results from the 
continuous-time one sssC /)41(003.0)( += . The reference 

trajectory is prescribed in terms of the unit step response of a 
second-order normalized reference model with the transfer 
function )2/()( 222

nnn sssM ω+ζω+ω= , with rad/s 1=ωn
 

and 7.0=ζ . An operational constraint is considered by 

imposing the control signal to be bounded 
within 2.01.0 ≤≤− u . The sampling period is 0.1 s and the 
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length of experiments is of 150=N samples. The relative 
degree of )( 1−qT  is 1=n  and the relative degree of )( 1−qSur

 

is 0=m . 
The DDRTTA is applied in a stochastic framework for three 

IPB iterations corresponding to 5.00 =κ , 5.01 =κ  and 

5.02 =κ . At each IPB iteration the corresponding initial step-
scaling coefficient was chosen as 200 =γ , 50 =γ  and 20 =γ . 

The stochastic setup was created by injecting zero mean white 
noise as an output disturbance (see Fig. 1), with variance 

04.02 =σ v
. The DDRTTA was run for 50 times. The initial 

reference input versus time is illustrated in Fig. 2. The initial 
position y and control signal u versus time are also given in 
Fig. 2 along with their final (after optimization) responses. The 
solution based on (22) was not used at this point. Instead a 
tradeoff was made to decrease κ  at a slow rate and not too 
much in order to prevent the violation of the constraints. Even 
in this case, the final results show that the final output response 
is close to the reference model trajectory while the constraints 
on u are fulfilled. So a nearly optimal solution is attained 
showing the effectiveness of DDRTTA. 

The residuals of the objective function are defined as 

)
~

(
~~

i

j

i

j

i JavgJJ −= , where 141 ≤≤ i  is the iteration index, 

501 ≤≤ j  is the algorithm run index, and )
~

( iJavg  is the 

sample average over all the 50 runs at the i
th iteration. The 

residuals are shown in Fig. 3. 
Our algorithm optimizes the reference input vector for 149 

variables and 298 constraints. It requires four experiments per 
iteration (one normal one and three gradient ones) for 14 
iterations. 

The decrease in the o.f. is substantial after only a small 
number of iterations that could be accepted as a reasonable 
solution without experimenting further on the CS. 

The experimental validation of the proposed DDRTTA is 
next presented. The controller, reference trajectory and initial 
reference input are considered as in the simulations. Two 
situations are illustrated here corresponding to an 
unconstrained optimization and to a constrained one with the 
control signal constraints as in the simulations. The IPB 
algorithm is used in a simplified steepest-descent fashion in the 
stochastic setting because the randomness is inherent in the 
real-world application. The same approach is used in the 
unconstrained case. The same initial feasible solution was 
chosen as a starting point in both optimization algorithms. 

The IPB was applied for three iterations corresponding to 

5.00 =κ , 05.01 =κ  and 005.02 =κ . At each iteration the 
corresponding step-scaling parameters of DDRTTA were 
chosen according to (13), with 200 =γ , 100 =γ  and 50 =γ , 

respectively. The step-scaling parameter 200 =γ  was set in 

the unconstrained case. In both cases the unity matrix was used 
for )( jRH . The compared results before and after the 

applications of our DDRTTA are shown in Figs. 4, 5 and 6. 
The same approach as in the simulation case study was used 

for a smooth decrease of κ  to get a nearly optimal solution. 
The improvements are visible even after a small number of 

iterations, both for the digital simulation results and the 
experimental ones. Even if the minimum is not reached the 
decrease of the o.f. is remarkable. 
 

 

Fig. 2.  Simulation results for 50 runs of DDRTTA, upper-left: the objective 
function, upper right: the initial control signal (dotted), the upper and lower 

bounds (thick dashed grey), lower left: the initial reference input (dotted) and 
the final reference inputs (solid), lower right: initial position response 

(dotted), reference model (dashed), final responses (solid) 
  

 

Fig. 3. Objective function residuals across the iterations for 50 runs of the 
DDRTTA algorithm. 

  

 

Fig. 4.  Experimental results expressed as o.f. evolution: unconstrained case 
(dash-dot), constrained (solid), and as optimized reference input: initial 

(dotted), unconstrained case (dash-dot), constrained case (solid). 
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Fig. 5.  Experimental results expressed as position response: initial (dotted), 
unconstrained case (dash-dot), constrained case (solid) and reference 

trajectory (dash). 
 

 

Fig. 6.  Experimental results expressed as control signal responses: initial 
(dotted), unconstrained case (dash-dot), constrained case (solid), upper and 

lower bounds (thick dashed grey). 
  

VI. CONCLUSION 

This paper has proposed a data-driven algorithm which 
solves an optimal control problem focused on reference 
trajectory tracking. The search procedure starts with a feasible 
solution and it is entirely model-free data-driven in the steepest 
descent case. 

One of the advantages of the new DDRTTA is that it works 
for smooth nonlinear systems around some operating points. 
Also, for time-varying systems for which the variation time 
scale is larger than the algorithm’s time scale, otherwise it may 
not converge to a solution. 

Another advantage of the proposed algorithm is that the 
closed-loop CS is not affected while solving the trajectory 
tracking problem. Starting with a given closed-loop controller 
(which can be obtained in terms of a model-based or model-
free design) the stability and the disturbance rejection are 
preserved. The latter can also be regarded as a shortcoming 
when the disturbance characteristics may change therefore 
requiring controller retuning. The change in the controller 
parameters specific to other tuning techniques including IFT 
which is important in order to achieve the bumpless transfer 
between controllers is mitigated by our approach. 

One limitation of the DDRTTA may be caused by the 
abnormal experimenting regimes or by the length of the 

optimization procedure or even by the duration of the 
experiments for the slow processes. However, assuming that 
the closed-loop CS is stable, the safety of the experiments is 
guaranteed around the operating point. 

The quality of the gradient estimate influences the length of 
the search procedure. Finite differences approximation 
estimation of the gradient would be a poor choice in the case 
of noisy measurements. Therefore the compromise to the small 
number of experiments per iteration and to the quality of the 
gradient information would require the use of an identified 
model for the closed-loop system. This approach eliminates 
three gradient experiments with the obvious advantage of 
trade-off to number of gradient experiments and gradient 
accuracy. In addition, the problem of the abnormal operating 
regimes is solved. The accuracy of the estimated gradient is 
expected to be good in case of smooth nonlinear processes, 
and it is a future research topic. 

Our algorithm can be generalized by considering other data-
driven optimization approaches to controller design combined 
with ILC to optimize the reference input. The main advantage 
of such combinations is that they can lead to automated tools 
for controller design with benefits in complex industrial 
systems applications. 
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